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vkeq[k 
 

Hkk-d`-vuq-i-&Hkkjrh; Ñf"k lkaf[;dh; vuqla/kku laLFkku ¼Hkk-d`-vuq-i-&Hkk-d`-lka-v-la-½ Ñf"k lkaf[;dh] 
Ñf"k tSolwpuk ,oa lax.kd vuqiz;ksx ds {ks= esa vuqla/kku dks c<kok nsus rFkk lapkfyr djus ds fy;s 
,d izeq[k laLFkku gSA ;g laLFkku] Hkkjrh; Ñf"k vuqla/kku ifj"kn~ ¼Hkk-d`-vuq-i-½ ds ekuo lalk/ku 
fodkl dk;ZØe ds rRok/kku esa Ñf"k lkaf[;dh ,oa lax.kd vuqiz;ksx esa mPp ladk; izf'k{k.k dsUnz ds 
:Ik esa Hkh dk;Zjr gSA Ñf"k Qlyksa] ckxokuh Qlyksa] Ik'kq/ku ,oa eRL; ikyu ds ekeyksa esa fofHkUu 
izkpyksa ds vkdyu ls lEcfU/kr izfrn'kZ losZ{k.kksa lfgr Ñf"k lkaf[;dh; ds fofHkUu {ks=ksa esa ekSfyd ,oa 
O;ogkfjd] n¨u¨a Ádkj ds vuqla/kku fd;s tk jgs gaSA izfrn'kZ losZ{k.k izHkkx ds oSKkfud izfrn'kZ losZ{k.k 
ds fofHkUu igyqvksa tSls tfVy losZ{k.kksa dh vfHkdYiuk vkSj fo'ys"k.k] losZ{k.k vk¡dM+ksa ds fo'ys"k.k gsrq 
lkW¶Vos;j fodflr djuk] cwVLVªSi fopj.k vkdyu rduhd] va'kkadu vkSj e‚My va'kkadu vuqekud] 
y?kq {ks= vkdyu] jSad lsV çfrp;u] vuqdwyh DyLVj çfrp;u] ,dkf/kd Ýse losZ{k.k] LFkkfud 
uewukdj.k ,oa vkdyu] HkkSxksfyd :i ls Hkkfjr çfrxeu vk/kkfjr vkdyu] —f"k losZ{k.kksa esa HkkSxksfyd 
lwpuk iz.kkyh ,oa lqnwj laosnh rduhdksa dk vuqç;ksx bR;kfn ds vuqla/kku esa yxs gq, gSaA ;g çHkkx 
çfrn'kZ losZ{k.k ds {ks= esa dbZ vuqç;qä vuqla/kku xfrfof/k;ksa ds fy, la;qä jk"Vª ds [kk| ,oa —f"k 
laxBu ¼,Q,vks½ ds lkFk varjjk"Vªh; lg;ksx esa Hkh ço`Ùk gSA 

^^—f"k losZ{k.k ds MsVk fo'ys"k.k dh vk/kqfud rduhdsa^^ uked bl izf'k{k.k dk;ZØe dk eq[; mÌs'; 
Ñf"k foKku ds fofHkUu fo"k;ksa ls lEcfU/kr izfrHkkfx;ksa dks izfrp;u dh fofHkUu rduhd ä ,oa vkdyu 
fof/k;kas] izfrn'kZ losZ{k.k¨a esa uohure fodkl ,oa izfrn'kZ vk¡dM+ksa ds fo'ys"k.k esa iz;ksx gksus okys 
lkW¶Vos;j iSdst tSls MS-Excel, R, SAS, Python ,oa SPSS ds iz;ksx] —f"k losZ{k.kksa esa HkkSxksfyd 
lwpuk iz.kkyh ,oa lqnwj laosnh rduhdksa dk vuqç;ksx bR;kfn dh tkudkjh iznku djuk gSA lS)kafrd 
ds vis{kk O;kogkfjd igyqvksa ij vf/kd tksj fn;k x;k gSA izfrHkkfx;kssa ds mi;ksx ds fy, lanHkZ 
iqfLrdk ljy :Ik esa izLrqr dh x;h gSA 

ge laLFkku ,oa vfrfFk ladk; ds lHkh ladk; lnL;ksa dk /kU;okn djrs gS ftUgksaus bl dk;ZØe dks 
lkFkZd ,oa lQy cukus esa viuk cgqeqY; le; yxk dj lg;ksx fn;k gSA ge izf'k{k.k dk;ZØe ds 
vk;kstu ds fy, fofHkUu O;oLFkk,a djus ds fy, 'kkfey fofHkUu lfefr;ksa ds v/;{kksa ,oa lnL;ksa ds Hkh 
vkHkkjh gSaaA muds vFkd iz;klks ls bl lanZHk iqfLrdk dks le; ls rS;kj djus esa enn feyh gSA ge 
bl izf'k{k.k dk;ZØe esa izfrHkkfx;ksa dks ukfer djus ds fy, Hkkjrh; Ñf"k vuqla/kku ifj"kn~ ds fofHkUu 
laLFkkuksa] jkT; Ñf"k fo'ofo|ky;ksa vkfn ds vkHkkjh gSaA bl izf'k{k.k dk;ZØe ds vk;kstu dk nkf;Ro 
gesa lkSaius ds fy, ge Hkkjrh; Ñf"k vuqla/kku ifj"kn~ ds f'k{kk izHkkx ds vkHkkjh gaSA ge MkW- jktsaæ 
çlkn] funs’kd] Hkk-d`-vuq-i-&Hkkjrh; Ñf"k lkaf[;dh vuqla/kku laLFkku ,oa MkW- rkSdhj vgen] çHkkxk/;{k] 
izfrn'kZ losZ{k.k izHkkx dk bl dk;ZØe esa ekxZn'kZu ,oa fujarj lg;ksx,oa izf'k{k.k dk;ZØe dks lqpk: 
lapkyu ds fy, lHkh vko';d lqfo/kk,a miyC/k djkus ds fy, vkHkkjh gSaA var esa] ge mu lHkh dk 
vkHkkj izdV djrs gaS ftUgksaus] bl lanHkZ iqfLrdk dks rS;kj djus esa lg;ksx fn;k gSA 
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PREFACE 
 

The ICAR-Indian Agricultural Statistics Research Institute, New Delhi is a premier 
Institute for promoting and conducting research in the field of Agricultural Statistics, 
Agricultural Bioinformatics and Computer Applications. The Institute is also functioning 
as a Centre of Advanced Faculty Training (CAFT) in Agricultural Statistics and 
Computer Application under the aegis of Human Resource Development Programme 
of the Indian Council of Agricultural Research (ICAR). Both basic and applied research 
are being carried out in various areas of Agricultural Statistics including Sample Surveys 
relating to estimation of different parameters of interest in case of field crops, 
horticulture crops, livestock and fisheries etc.  Scientists of the Division of Sample 
Surveys are engaged in research on various aspects of sample surveys like design and 
analysis of complex surveys, application of statistical softwares for survey data analysis, 
bootstrap variance estimation techniques, calibration and model calibration estimators, 
small area estimation, ranked set sampling, adaptive cluster sampling, multiple frame 
surveys, spatial sampling and estimation, geographically weighted regression based 
estimation approaches, application of GIS and remote sensing techniques in agricultural 
surveys etc. The division is also engaged in international collaborations with Food and 
Agriculture Organization of the United Nations (FAO) for several applied research 
activities in the field of sample surveys.  

The broader objective of this training programme on “Modern Data Analytics 
Techniques for Agricultural Surveys” is to provide exposure to the participants 
belonging to different disciplines of agricultural sciences in proper understanding of 
various sampling techniques and estimation procedures, some recent developments in 
sample surveys, use of software packages for survey data analysis like MS-Excel, R, SAS, 
Python and SPSS, application of remote sensing and GIS techniques in agricultural 
surveys etc. More emphasis is given on the applied aspects rather than theoretical. The 
reference manual is presented in a simplified and comprehensive manner for better usage 
by the participants. 

We take this opportunity to thank all the faculty members from the institute and the 
guest faculties who have devoted their valuable time and energy in making this training 
program successful. Their sincere efforts helped in bringing out this lecture manual on 
time. We are also thankful to the Chairman and members of various committees involved 
in successful organization of this training programme. We are also thankful to various 
ICAR Institutes, State Agricultural Universities etc. for nominating participants to this 
training programme. We are indebted to the Agricultural Education Division of ICAR 
for entrusting the responsibility of organizing this training programme. We are also 
grateful to Dr. Rajender Parsad, Director, ICAR-IASRI and Dr. Tauqueer Ahmad, Head, 
Division of Sample Surveys for their guidance and continuous support in this training 
programme and providing all the necessary facilities for smooth conduct of this training 
programme. In the end, we are thankful to one and all who helped in preparing this 
reference manual. 

 
 
New Delhi                          Authors 
February 11, 2025 
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1. Introduction 

The word "Statistics" is derived from the Latin word "Status," the Italian "statista," or the 
German "statistik," all of which refer to a 'political state.' Over time, various authors have 
defined statistics in different ways. Generally, the term "Statistics" is used in two contexts:  
(i) in its plural form, it refers to quantitative data, and (ii) in its singular form, it denotes the 
science of collecting, classifying, analyzing, and interpreting data. 

Statistics as Numerical data – definitions 

 Statistics are numerical statement of facts in any department of enquity placed in 
relation to each other        -Bowley 

 By statistics we mean quantitative data affected to a marked extent by multiplicity of 
causes         -Yule and Kendall 

Statistics as statistical Methods- definitions 

 Statistics may be defined as the science of collection, presentation, analysis and 
interpretation of numerical data      -Croxton and cowden 

 Statistics is the branch of scientific method which deals with the data obtained by 
counting or measuring the properties of population of natural phenomenon      -Kendall 

 
2. Scope of Statistics in Agriculture 

Statistics plays a crucial role in collecting, classifying, tabulating, analyzing, and 
interpreting agricultural data, enabling informed decision-making. Some key areas where 
statistics plays a significant role in agriculture include: 

 Collection of Agricultural Statistics: Statistics is essential for gathering data on 
various aspects of agriculture, including crop production, livestock statistics, fishery 
statistics etc. This data helps in creating accurate records and forms the foundation for 
informed decision-making. 

 Analyzing Experimental Data: Agricultural research often involves controlled 
experiments to test different farming practices, crop varieties, or fertilizers. Statistical 
techniques are used to analyze experimental data, ensuring that the results are reliable 
and meaningful. This helps in identifying the most effective methods for improving 
crop productivity and sustainability. 

 Prediction of Yields: Statistical models, particularly time series analysis and 
forecasting techniques, are used to predict future crop yields based on historical data 
and environmental factors like weather patterns, soil health, and irrigation methods. 
Accurate predictions help farmers plan better and mitigate risks related to crop failure 
or low yields. 

 Crop Yield Estimation: Estimating crop yield is vital for agricultural planning, policy 
formulation, and ensuring food security. Statistics plays a key role in designing and 
analyzing surveys and field experiments to estimate the potential yield of crops in 
different regions, helping policymakers allocate resources effectively. 
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 Agricultural Policy and Economics: Governments and policy-makers use statistical 
data to formulate agricultural policies, subsidies, and programs that support farmers. 
It also helps in evaluating the economic performance of the agricultural sector. 
 

3. Limitation of Statistics: 
Although statistics is a powerful tool, it does have several limitations, including: 

 Statistical studies are true only on an average: Statistical methods often deal with 
general trends, averages, and patterns observed across large datasets. The results of a 
statistical study typically reflect the central tendency or overall trend of a population, 
rather than the behavior of every individual case. This means that while the findings 
may be true for the population as a whole, they might not always apply accurately to 
each specific instance within the population. For example, an average crop yield 
prediction based on historical data might be accurate overall, but it could vary for 
particular farms due to local conditions such as soil quality, weather, or farming 
practices. 

 It is associated with some amount of error: All statistical methods come with a 
degree of uncertainty or error. These errors can arise from various sources, including 
measurement inaccuracies, sampling errors, or even flaws in the assumptions made 
when conducting the analysis. For instance, if a sample is used to estimate the 
characteristics of a larger population, the sample might not perfectly represent that 
population, introducing sampling error. Even with precise data, random fluctuations or 
uncontrollable factors might influence results. 

 It is liable to be misused: Statistics can be powerful in uncovering trends, making 
predictions, and guiding decisions, but they are also vulnerable to misuse. This occurs 
when data is manipulated or selectively presented to support a specific agenda, or when 
statistical methods are applied incorrectly. For example, presenting only favorable data 
while ignoring conflicting results, or using misleading charts and graphs, can create a 
false impression of the findings. Even the way questions are framed or the sample is 
chosen can skew results. 

 It does not study qualitative phenomena: Statistical analysis is inherently 
quantitative, meaning it focuses on numerical data and measurable aspects of a 
phenomenon. While it excels at summarizing large volumes of numerical information 
and identifying patterns, it is not equipped to directly study qualitative phenomena such 
as emotions, behaviors, or the subjective experiences of individuals. For example, while 
statistics can quantify the average income of farmers in a region, it cannot capture the 
underlying reasons why farmers feel stressed or motivated, nor can it assess the cultural 
and social aspects of farming that may influence decision-making. 
 

4. Types of Data and Measurement Scales   

Types of Data  

In statistics, data is broadly classified into two main types: 

 Qualitative (Categorical) Data: This type of data represents categories or labels and 
cannot be measured numerically. It is further divided into: 
o Nominal Data: Data that represents categories without any order. (e.g., gender, eye 

color, marital status) 
o Ordinal Data: Data that has a meaningful order but the difference between values 

is not consistent. (e.g., education level, customer satisfaction ratings) 
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 Quantitative (Numerical) Data: This type of data consists of numbers and can be 
measured. It is further divided into: 
o Discrete Data: Data that takes only specific values and cannot be broken down 

further (countable). (e.g., number of students, number of cars) 
o Continuous Data: Data that can take any value within a given range (measurable). 

(e.g., height, weight) 

Each type of data requires different statistical methods for analysis, interpretation, and 
visualization.  

 

Measurement Scales: There are four main types of measurement scales: 

 Nominal Scale (Qualitative, No Order): Used for labeling or categorizing data without 
any order; No numerical significance or ranking. Example: gender (male, female), eye 
color (blue, green, brown), blood type (A, B, AB, O). 

 Ordinal Scale (Qualitative, Ordered): Data is categorized with a meaningful order, but 
the differences between values are not equal or measurable. Example: education level, 
satisfaction ratings (satisfied, neutral, dissatisfied). 

 Interval Scale (Quantitative, No True Zero): Numeric data where differences between 
values are meaningful, but there is no true zero. Example: Temperature  

 Ratio Scale (Quantitative, True Zero): Similar to the interval scale but with a true zero 
point, allowing meaningful ratios. Example: height, weight, age, income, distance, 
time. 
 
 

5. Descriptive Statistics   

Descriptive statistics deals with summarizing and organizing data to make it easier to 
understand.  

5.1 Measures of Central Tendency: It is a single value within the range of data which is 
used to represent all values of the series. The objective of this is to get a single value which 
represent all values of the series and to facilitate the comparison between two or more than 
two series. 
 

Measures of Central Tendency: 

 Arithmetic mean (or Mean) 
 Median 
 Mode 
 Geometric Mean 
 Harmonic Mean 

 
 Arithmetic mean (Mean): It is sum of observations divided by total number of 

observations. Suppose Xଵ, Xଶ, … , X୬ be n observations, then mean can be calculated by  
 

Mean Xഥ =   
ଡ଼భା ଡ଼మା … ାଡ଼౤

୬
 =    

∑ ଡ଼౟
౤
౟సభ

୬
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 Median: Median is that value which divide the given set of data in two equal parts. The 
procedure for finding median includes arrangement of the given set of data either in 
increasing or decreasing order. There are two cases. 

Case I:  Number of observation is odd: If number of observations ‘n’ is odd, then 

median is 
୬ାଵ

ଶ
th term. 

Case II:  Number of observation is even: Let number of observations ‘n’ is even. There 

will be two middle terms i.e  
୬

ଶ
th and ቀ୬

ଶ
൅ 1ቁ th term, then median is mean of these two 

middle terms 

 

 Mode: Mode is that value which is have maximum frequency in given data set. 
 

 Geometric mean (GM): Suppose Xଵ, Xଶ, … , X୬ be n observations, then geometric mean 
is nth root of product of n observations (GM = ඥXଵ. Xଶ. Xଷ … X୬

౤ ) 
 

 Harmonic Mean (HM):  Suppose  Xଵ, Xଶ, … , X୬ be n observations, then harmonic mean 
is reciprocal of arithmetic mean of reciprocal of observations i.e. HM = 

୬
భ

౔భ 
ା భ

౔మ 
ା భ

౔య 
ା⋯ା భ

౔౤ 
    

 

 
5.2 Measure of dispersion: It measures the variability or scatterdness of mass of figures 

in the given data set from its average. Measure of Dispersion are: 
 Range 
 Quartile deviation 
 Mean deviation 
 Standard deviation 

 
 Range: It is difference between maximum and minimum value. 

 
 Quartile deviation (QD):  It is half of inter-quartile range. Mathematically QD = 

୕యି ୕భ 

 ଶ
, where Q3 is 3rd quartile and Q1 is 1st  quartile. Quartile is the value which divide 

given data set in four equal  parts. 
 

 Mean deviation (MD): It is arithmetic mean of absolute value of deviation of 

observation from its average. Suppose  Xଵ, Xଶ, … , X୬ be n observations, then MD = 
ଵ

୬
 

∑  X െ A , where A may be mean, median or mode. 
 

 Standard deviation (SD) : It is positive square root of arithmetic mean of square of 
deviation of observations from mean. It is denoted by . 

 
 Variance: It is arithmetic mean of square of deviation of observations from mean . It is 

denoted by 2. 
 

 Coefficient of variation (CV): When two or more than two series differ in their unit 
and we want to compare these series, then suitable measure is coefficient of variation. It 
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measure the percentage variation in the mean, where standard deviation is considered as 
total variation.  

CV = 
஢

ଡ଼ഥ
 ×100 

The series having smaller value of CV is more consistent or having less variability than 
the series having high value of CV. 
 

5.3 Skewness: It measures the lack of symmetry in the shape of distribution. It is of two 
types 
 Positively skewed: In positively skewed distribution more frequency is towards 

right hand side of the distribution. Value of mean is more as compared to mode. 
 Negatively Skewed: In negatively skewed distribution more frequency is towards 

left hand side of distribution.   Value of mode is more as compared to mean. 

Symmetrical distribution: A distribution is symmetrical if value of mean, median and 
mode are same. Curve is bell shaped and symmetric at mean.  
 

5.4 Kurtosis:  It measure the flatness or peakness of distribution. Mathematically, 

2 = 
ஜర

ஜమ
మ 

If 2  = 3, distribution is mesokurtic i.e. distribution is neither more flat  nor more peaked 
    2  > 3 , distribution is leptokurtic  i.e. distribution is more peaked 
    2  < 3, distribution is platykurtic i.e distribution is more flatter. 
 
 

6. Graphical and Diagrammatic representation of data: Graphical and diagrammatic 
representations help present data visually, making it easier to understand, analyze, and 
interpret. Instead of looking at large tables of numbers, graphs and charts provide a 
clear, summarized view of the data. Graphical Representation includes histogram, 
frequency curve, frequency polygon etc. diagram includes one dimensional diagram 
(simple bar diagram, multiple bar diagram etc.), two dimentional disgram (squares, 
circular diagram) etc.  
 

7. Correlation and Regression: Correlation and regression are both statistical methods 
used to analyze the relationship between two or more variables, but they serve different 
purposes. 
 Correlation: The measure of the strength and direction of the linear relationship 

between two variables. It ranges from -1 to 1 

o r = 1: Perfect positive correlation (as one variable increases, the other increases 
in exact proportion). 

o r = -1: Perfect negative correlation (as one variable increases, the other 
decreases in exact proportion). 

o r = 0: No linear correlation (the variables are unrelated in a linear fashion). 

o 0 < r < 1: Positive correlation (as one variable increases, the other tends to 
increase). 

o -1 < r < 0: Negative correlation (as one variable increases, the other tends to 
decrease). 
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 Regression: Regression is used to model the relationship between a dependent 
(response) variable and one or more independent (predictor) variables. Unlike 
correlation, regression involves predicting the value of the dependent variable based 
on the independent variables.  

 
8. Hypothesis testing: Hypothesis testing is a statistical method used to make inferences 

or draw conclusions about a population based on a sample of data. It allows researchers 
to test an assumption (hypothesis) about a population parameter. Steps involved in 
hypothesis testing are:  
 State the Hypotheses: 

o Null Hypothesis (H₀): The assumption that there is no difference 

o Alternative Hypothesis (H₁ or Ha): The statement that contradicts the null 
hypothesis, indicating there is an effect or difference. 

 Choose the Significance Level (α): This is typically set at 0.05, which means 
there is a 5% chance of rejecting the null hypothesis when it is actually true. 

 Select the Appropriate Test: Depending on the type of data and hypothesis, 
different tests may be used, such as: 

o t-test (for comparing two means) 

o Chi-square test (for categorical data) 

o ANOVA (for comparing means across more than two groups) 

o z-test (for large sample sizes with known population variance) 

 Collect and Analyze Data: Gather the sample data and perform the selected 
statistical test. 

 Calculate the Test Statistic: Depending on the test, calculate the statistic (e.g., t, 
z, F, etc.), which will measure how far the sample statistic is from the population 
parameter. 

 Find the p-value: The p-value indicates the probability of obtaining the observed 
results (or more extreme) given that the null hypothesis is true. If the p-value is less 
than the significance level (α), reject the null hypothesis. 

 Make a Decision: 

o If the p-value < α: Reject the null hypothesis (H₀) in favor of the alternative 
hypothesis (H₁). 

o If the p-value ≥ α: Fail to reject the null hypothesis. 

 Conclusion: Based on the decision, conclude whether or not there is enough 
evidence to support the alternative hypothesis. 

9. Sampling Methods: Sampling methods refer to the techniques used to select a 
representative subset of individuals from a larger population to give conclusion about 
the whole target population. Sampling methods can be broadly classified into two 
categories: probability sampling and non-probability sampling. These categories differ 
in how the sample is selected and the degree of randomness or bias involved. 
 Probability Sampling: In probability sampling, every individual or unit in the 

population has a known, non-zero chance of being selected. These methods are 
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considered more statistically rigorous because they reduce bias and allow for 
generalizations about the population. It includes: 

o Simple Random Sampling 

o Stratified Sampling 

o Systematic Sampling 

o Cluster Sampling 

o Multistage Sampling 

 Non-Probability Sampling: In non-probability sampling, not all individuals have 
a known or equal chance of being selected. This introduces the possibility of bias, 
making it harder to generalize findings to the entire population. It includes:  

o Convenience Sampling 

o Judgmental (Purposive) Sampling 

o Snowball Sampling 

o Quota Sampling 

 

10. Conclusion: Basic statistical methods are crucial for analyzing and interpreting data, 
offering essential tools for understanding and making decisions based on information. 
Descriptive statistics summarize data patterns, and inferential statistics inform decision-
making by drawing conclusions from samples. A solid understanding of hypothesis 
testing, correlation, and regression further strengthens analytical skills, enabling deeper 
insights across various fields. This chapter serves as the foundation for more advanced 
statistical techniques, empowering data-driven decision-making with greater reliability 
and effectiveness. 

 

Reference: 

Gupta, S. C., and V. K. Kapoor. Fundamentals of Mathematical Statistics. Sultan Chand & 
Sons, 2002. 
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1. Introduction 

In situations when values of parameters are not known then we estimate the values of 
parameters from the sample data.  There are two situations (i) when sample value is exactly 
same as parametric value then we accept this value without any hitch (ii) when the sample 
value is not same as population value we cannot accept the sample value as parametric value. 
In this situation there are some procedures or methods that enable us to decide whether to 
accept or reject the hypothetical value on the basis of sample values. Such procedure is 
known as testing of hypothesis.  

 

2. Essential Terminology and Concepts 

 Statistical Hypothesis: This is a statement about the distribution of one or more random 
variables. If the statistical hypothesis completely specifies the distribution, it is called a 
simple statistical hypothesis, if it does not, it is called composite statistical hypothesis. 

 Null Hypothesis: This is the hypothesis which is tested under the assumption that it is 
true. It is a statistical statement about the parameter that is tested for its possible rejection 
under the assumption that it is true. It is denoted by H0. 

 Alternative Hypothesis: The alternative hypothesis provides an alternate to null 
hypothesis. A hypothesis used in testing of hypothesis that is contrary to the null 
hypothesis is known as the alternative hypothesis and denoted by H1. 

 Statistical Test: A test of statistical hypothesis is a rule when the experimental sample 
values obtained leads to a decision to accept or reject the null hypothesis under 
consideration. 

 Errors in Testing of Hypothesis: 

Type - I Error: In a hypothesis testing type I error occurs when the null hypothesis is 
rejected when in fact it is true. The probability of Type-I Error is denoted by α. 

Type - II Error: In a hypothesis testing a type II error occurs when the null hypothesis 
H0 is accepted when in fact it is false.  The probability of Type-II error is denoted by β. 

 Level of significance: It is the probability of rejecting null hypothesis (H0) when it is 
true. It is denoted by α.  

                        P (Reject H0/H0 is true) = α 

      Usually, the significance level is chosen to is either 5%  or  1% . 
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 Power of the Test:  The power of a test is the probability of not committing Type –II 
error. It is the ability of the test to reject the null hypothesis when it is actually false. 
It is calculated by subtracting the probability of  Type - II error from 1.  

Power of test = 1 – P (Type - -II error) = 1-β 

 

3. Steps in Procedure of Hypothesis Testing: The usual process of hypothesis testing 
consists following steps: 

 State the null hypothesis H0 and the alternative hypothesis H1 about the 
population parameter 

 Choose the level of significance  

 Choose the appropriate test statistic 

 Compute the value of test statistic 

 Decide critical value and critical region 

 Decision about the acceptance or rejection of the null hypothesis 

 Write the conclusion of test in simple language 

 

Tests of significance 

1. Large sample tests (n>30) 

2. Small sample tests (n<30) 

Since small samples tests are mostly used in actual practice. So we will discuss small sample 
tests and their applications. 

 

4. Parametric Tests  

4.1 t-test: When the sample size is small then the distribution of the variable is not normal. 
In that case variable follows a distribution which is known as t-distribution. This test was 
given by W.S. Gosset in 1908 who wrote under the nickname ‘Student’.  This test is based on 
the following assumptions. 

Assumptions 

(i) The parent population from which the sample is drawn is normal 

(ii)  Sample observations are independent  

(iii) Population variance is unknown 

(iv)  Sample size is small (n<30).  
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Applications of t-test 

1. Testing the significance of population mean 

2. Testing the equality of two population means 

3. Paired t test 

4. Testing the significance of correlation coefficient 

5. Testing the significance of regression coefficient 

 

Testing the significance of population mean (Student t-test) 

When the sample size is small and we want to test the hypothesis whether the sample has 
been drawn from a population with specified population mean value. Then we use the t-test.  
The null and alternate hypotheses under this test are given below. 

0 0H :     

            1 0H :    

Test statistics is given by 

              0
cal

x
t

s
n


  

where x  is the sample mean based on n observations. s  is the sample standard deviation 
which is calculated by 

       2

1

1
( )

1

n

i
i

s x x
n 

 
   

  The  calt   statistic follows the t- distribution with n-1 degrees of freedom.  

 

Testing the equality of two population means (Independent Samples t-test) 

This test is also known as Fisher’s test. This test is used to test the hypothesis that the 
population means of the two independent samples are same. In other words, this test is used 
to test the hypothesis whether the two samples have been drawn from the same populations. 
Suppose we have two independent samples X ( 1X … 

1nX ) and Y ( 1Y … 
2nY ) drawn from the 

normal populations ),(
2

11 N  and ),(
2

22 N  respectively. This test is based on the 
assumption that population variances for the both the samples are same. The Null and 
alternate hypothesis are given below. 

0 1 2H :     

1 1 2H :    
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Then the test statistic is given by 

             

1 2

1 1
cal

X Y
t

s
n n





 

    where  

 

          
2 2

1 1 2 2

1 2

( 1) ( 1)

2

n s n s
s

n n

  


 
 

 

         
1

2 2
1

11

1
( )

1

n

i
i

s x x
n 

 
    and     

2
2 2

2
12

1
( )

1

n

i
i

s y y
n 

 
   

The calt  statistic follows t-distribution with 1 2 2n n    degrees of freedom. 

 

4.2 Paired t test:  This analysis is performed in case of two matched/ paired samples to 
determine whether two means are equal or not. We can use paired t-test when there is a 
natural pairing of observations in the samples, such as when individuals/animals in the group 
are tested twice, before and after experiment. 

This test is used to test the hypothesis of equality of means of two dependent samples. 

      0H : 0d    

            1H : 0d   

Then the test statistic is given by 

            calt

1
d

d
s

n





 

    where   
n

d
d i     and   2

1

1
( )

1

n

d i
i

s d d
n 

 
     

The test statistic calt  follows t- distribution with n-1 degrees of freedom. 

 

4.3 Testing the Significance of Correlation Coefficient 

Suppose, r is sample correlation coefficient in a sample of n pairs of observations from 
bivariate normal population and here we want to test 

  0 : 0H   .  There is no correlation between two variables   
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 1 : 0H      Correlation coefficient is significant 

The t-statistic is given by 

                 
2

2

1

r n
t

r





 

The  t  statistic follows the t- distribution with n-2 degrees of freedom.  

 

4.4 Testing the significance of Regression Coefficient 

For testing the significance of regression coefficient null and alternative hypothesis are given 
below 

   H0 : b1 = 0 i.e. the slope coefficient is equal to zero 

   H1 : b1   0 i.e. the slope coefficient is not equal to zero. 

 The t- test statistic is given by  

     
b

b
t

s
  

where b is the slope coefficient of the regression line and bs  is the standard error of the slope. 

The standard error of the slope is 
21

2
b

rb
s

r n





 

The  t  statistic follows the t- distribution with n-2 degrees of freedom.  

 

4.5 F  Test (Variance Ratio Test) 

The F-test was first discovered by Professor R.A. Fisher and later developed by G.W. 
Snedecor. This test is also known as F- test (in the honor of Fisher). Since the F test is based 
on the ratios of two variances so this is also called as Variance Ratio Test and is based on 
Snedecor’s F distribution. 

When testing the equality of two normal population variances the F statistic used is the ratio 
of two sample variances and is as follow: 

          
2

2
x

y

s
F

s
  

where 
 2

2

1 1x

x x
s

n





  and 

 2

2

2 1y

y y
s

n





  

Note: Put the higher value of estimates of sample variance in numerator and smaller value of 
estimated variance in denominator. 
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Applications of F- Test 

1. To test equality of two population variances. 

2. To test the equality of several population means (ANOVA). 

3. To test the significance of multiple correlation coefficient. 

4. To test the significance of sample correlation ratio. 

5. To test the linearity of the regression.  

 

Chi-Square Test ( 2 ) Test 

The chi-square test is an important statistical test used in data analysis. This test was 
developed by Prof. Karl Pearson in 1900.  

 

Uses of Chi-Square ( 2 ) Test 

1. To test the significance of  population variance ( 2
0  ). 

2. To test the goodness of fit of the data. 

3. To test the independence of attributes. 

4. To test the linkages in backcross. 

5. To test equality or homogeneity of more than two (several) population proportions. 

6. To test the homogeneity of several population variances (Bartlett’s test).  

7. To test equality of several population correlation coefficients. 

 

5. Non-parametric Methods 

Parametric tests are used when the information about the distribution of the population 
parameter is known. For example, sample has been drawn from the normal population in case 
of t-test. But when there is no or few information available about the distribution of the 
population parameters, non-parametric tests are used. However, non-parametric tests make 
no or fewer assumptions about the distribution of data. Hence non-parametric tests are called 
distribution free tests.   

5.1 Sign Test: This test is non parametric counterpart of the student t test for single sample. 
This is used to test the hypothesis that the median ( ) of a population has specific value 

say, 0 . 

Null hypothesis 0H : 0   

Alternative hypothesis 1H  : 0   
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Suppose 1X , 2X , ……………………, nX  is a random sample of size n taken from a 

population with median 0 . Now we will perform the sign test in following manner: 

1. Subtract the given value of population median 0  from each value of sample and give 

plus (+) sign if deviation is positive and give minus (-) sign if deviation is negative. 
2. Give zero if deviation is zero. 
3. Here we consider only the signs not magnitude of ranks. 
4. Drop out the zero signs. 

Test Statistic: The test statistic is X defined as the smaller of X+ and X- which are the sums 
of the positive and negative ranks of the difference scores, respectively.   

When the  sample size is small ( 25n ) then 
 Test statistic X is given by 

  X= Minimum (Positive signs, Negative signs) 

Decision: If calculated value of test statistic X  is less than the table value (critical value) of 
test at given level of significance, then accept the null hypothesis and otherwise reject it. 

when the  sample size is  large ( 25n  ) then 

Test statistic is: 

( 0.5)
2 (0,1)

1
2

n
X

Z N
n

 
   

Decision: If calculated value of Z is less than the table value of z at given level of 
significance, then accept the null hypothesis, and otherwise reject it. 

 

5.2 Wilcoxon Signed Ranked Test: The Wilcoxon Signed Ranked test is a nonparametric 
counterpart of the Paired t-test. The test is used to compare two dependent or matched or 
paired samples with ordinal continuous data. This test is used to test the hypothesis that the 
median ( ) of a population has specific value say, 0 . 

Null hypothesis ( 0H ): Median difference is zero 

Alternative hypothesis ( 1H ): Median difference is not zero 

Suppose there are 1X , 2X , ……………………, nX sample of size n taken from a population 

with median 0 . To calculate the Test statistics W subtract the given value of population 

median 0  from each value of sample and give plus (+) sign if deviation is positive, minus (-) 

sign if deviation is negative and zero if deviation is zero. Drop out the zero signs from the 
counting of statistic. Here we consider both signs and magnitude of deviations. 

Test Statistic: The test statistic is W, defined as the smaller of W+ and W- which are the 
sums of the positive and negative ranks of the difference scores, respectively.  
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When Sample Size is Small ( 30n ) 

Test statistic W is given by 

W = Minimum (no. of plus signs, no. of minus signs) 

Decision: If calculated value of test statistic W  is less than the table value (critical value) of 
test at given level of significance, then accept the null hypothesis, and otherwise reject it. 

When Sample Size is large ( 30n  )  

Test statistic is given by 

 

           W

W

W
Z





  

          where       
( 1)

4W

n n 
       and  

( 1)(2 1)

24W

n n n  
  

W = Smaller of (no. of plus signs, no. of minus signs 

 n = Total sample size 

Decision: If calculated value of Z is less than the table value of Z at given level of 
significance, then accept the null hypothesis, and otherwise reject it. Reject H0 if W < critical 
value from table. 

 

5.3 Mann-Whitney -Wilcoxon U Test 

The Mann-Whitney-Wilcoxon U test is a nonparametric alternative to independent samples t 
test. This test is used to compare two different independent groups or conditions or 
treatments, when the dependent variable is either ordinal or continuous under the assumption 
that values are not normally distributed. The only assumption is that variable(s) is (are) 
continuous and sample are random and not less than 10. Here we test whether the two 
populations differ through determining if there are differences in medians between two 
groups.  

There are following steps: This test uses the sum of the ranks of each sample. 

1. Set up hypotheses: H0: The two populations are equal 
                                 H1: The two populations are not equal.   

2. Combine the observations both samples (X-values) and (Y-values) in to a single 
sample. 

3. Arrange the observations of combined sample in ascending order of magnitude. 
4. Assign the ranks to ordered data values. 
5. Compute the value of U test statistic   

       U = Smaller of ( xU and yU ) 
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           1 1
1 2

( 1)

2X X

n n
U n n R


          and         2 2

1 2

( 1)

2Y Y

n n
U n n R


    

Where, 1n = No. of observations in first sample (X-values) 

             2n = No. of observations in second sample (Y-values) 

            xR = Sum of ranks of observations of first sample 

            yR = Sum of ranks of observations of second sample 

6. Reject the null hypothesis if critical value at chosen value of   (tabulated value) of U 
is less than calculated value of U, otherwise accept it. 

 

For a Large Sample: If sample size is larger than 20,  ,u uU N   then use following 

normal test: u

u

U
Z





  

Where, Mean ( u ) = 1 2

2

n n
 and Standard Deviation ( u ) = 1 2 1 2( 1

12

n n n n 
 

 

5.4 Run Test for Testing the Randomness 

Run test is a non-parametric statistical method that examines whether a given data set has 
been randomly selected from a specific distribution. Run test used to test whether the 
distribution functions F(x) and G(y) of two continuous random variables X and Y are equal or 
not. 

The runs test analyses the occurrence of similar events that are separated by other events that 
are different from them. Thus this tests the randomness (independency) of data. A run is 
defined as a sequence of similar or like events, items or symbols that is preceded by and 
followed by an event, item or symbol of a different type, or by none at all. 

A run has two characteristics, number of runs and the length of run. 

Procedure: 

1. Assume that the data available for the analysis can categorize into two mutually 
exclusive types. 

2. Determine the total sample size (n), number of observation of each type ( 1n = the 

number of observation of one type and 2n = the number of observations of the other 

type). 
3. State the null and alternate hypothesis 

           H0: Pattern of occurrence of items is random              

           H1: The pattern of occurrence is not random 
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4. Calculate the test statistic (r) 
  r = total number of runs 

5. Determine the critical value from the statistical table using 1n and 2n . 

6. Take a decision about acceptance or rejection of null hypothesis.  
 
If calculated value of test statistic is less than the value of lower critical limits or more 
than value of upper critical limit, reject the null hypothesis otherwise accept. 

 

Run Test for Large Sample 

Suppose there are 1n  elements of one type and 2n  of the other, where 1n  ≥ 2n  and 1n  is large 

enough (approximately 1n > 20). Suppose further there are r runs.  

                     r

r

r
Z





  

where: r is the number of runs, μr is the expected number of runs and  

  σr is the standard deviation of the number of runs. 

Then based on the null hypothesis H0 that the order is random, r has an approximately 
normal distribution N(μ,σ). 

 The values of μr and σr are computed as follows 

                 1 2

1 2

2
1r

n n

n n
  


  

 
   

1 2 1 2 1 2
2

1 2 1 2

2 2

1
r

n n n n n n

n n n n


 


  
 

Run test is a statistical test that is used to know the randomness in data.   

 

5.5 Kruskal -Wallis Test: This test is analogue of the ANOVA for one way classified data. 
It is used to compare more than two independent groups with ordinal data with respect to 
their identicalness (distributions of populations). This test compares medians among the k 
comparison groups (k > 2) and is sometimes described as One Way ANOVA with the ranked 
data. It is an extension of the Mann-Whitney test to situations where more than two 
levels/populations are involved.  

Assumptions 

1. The population need not be normal. 
2. There are minimum three independent groups or samples having minimum five   

observations in each sample. 

               0H : The medians of k populations are equal 

              1H : At least medians of two populations are not equal  
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The procedure for the test involves pooling the observations from the k samples into one 
combined sample and then ranking the observations in ascending order from lowest to 
highest, i.e., from 1 to N. Where N is the total sample size, 1 2 3 ......... kN n n n n    ., k is the 

number of comparison groups, jR  is the sum of the ranks in the i-th group or sample and in  

is the sample size in the i-th sample, then the test statistic H is given by:  
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Test statistics is approximately distributed as chi-square variate with (k -1) d.f. 

Decision Rule: Reject the null hypothesis 0H  if calculated value of H is more or equal to 

tabulated value of Chi -Square for  level of significance at (k-1)  degrees of freedom 
otherwise accept  it. 

 

5.6 Friedman Test: The Friedman test is the non-parametric alternative to the  ANOVA 
with repeated measures. It is used to determine differences among the three or more 
measurements from the same group of subjects are significantly different from each other or 
not, when the dependent variable is measured on ordinal scale. Here assumption is that data 
is random and continuous that has violated the assumptions of normality.  

Procedure to Conduct Friedman Test 

1. Rank each row (block) together and independently of the other rows. When there are 
ties, give the average ranks of the observations. 

2. Find the sum of the ranks for each column (treatments) and then sum of the squared 
rank total. 

3. Compute the Friedman test statistic 
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 where r = no. of rows (blocks) and k = no. of treatments (groups or columns) 

Test statistics is approximately distributed as chi-square variate with (k -1) degrees of 
freedom.

 4. Determine critical value from chi-square distribution table with k-1 degrees of 
freedom. 

5. Decision and conclusion: Accept the null hypothesis if calculated value is less than 
tabulated value of Chi-Square for  level of significance at  (k-1)  degrees of freedom 
otherwise reject it. 
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5.7 Kolmogorov- Smirnov Test: The Kolmogorov–Smirnov test is 
a nonparametric goodness-of-fit test. This test is based on empirical distribution and 
compare empirical distribution of a sample of any value of x with the Cumulative 
Distribution Function (CDF) of the population. The empirical distribution function Sn(x) is 
the fraction of sample values that are equal to or less than x. This test can also be used to test 
whether a sample comes from a population that is normally distributed. It makes better use of 
available data than Chi-square test and compares an empirical distribution with cumulative 
distribution function for a variable. In this the null hypothesis assumes that there is no 
difference between the observed and theoretical distribution.  

H0: Data follow a specified distribution, F(x) = F0 (x) 

H1: Data don’t follow a specified distribution, F(x)  F0 (x) 

The K-S test statistic measures the largest distance between the empirical distribution 
function  Sn(x)  and the hypothesized or theoretical distribution function F0(x). 

The value of test statistic 'D' is calculated as: 

                                                             
0 n

overallx
D = Max F (x) -S (x)  

where, Sn(x) is empirical distribution of the observed data  

        Sn(x) =k/n =(No. of Observations ≤ X)/(Total No. of Observations). 

         F0(x) =   CDF of the population 

The critical value of D is found from the K-S table values for one sample test. 

Decision Criteria: If calculated value is less than tabulated value, D   Dn,  accept null 
hypothesis otherwise reject. 

 

5.8 Spearman's Rank Correlation ( sr ): Spearman's rank correlation coefficient can be 

defined as a special case of Pearson’s correlation coefficient applied to ranked or sorted 
variables. Unlike Pearson, Spearman's correlation is not restricted to linear relationships. 
Instead, it measures monotonic association (only strictly increasing or decreasing but not 
mixed) between two variables and relies on the rank order of values.  In other words, rather 
than comparing means and variances, Spearman's coefficient looks at the relative order of 
values for each variable. This makes it appropriate to use with both continuous and discrete 
data. The formula for computing Spearman's Rank Correlation Coefficient ( sr ) is given 

below. 
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     where, d = Difference of ranks 
                 n = Number of observations 

The value of Spearman’s rank correlation coefficient lies between -1 and +1. 
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1. Introduction: 
Correlation and regression analysis are fundamental statistical techniques used to measure 
relationships between variables. These methods are widely applied in various fields such 
as economics, finance, biology, and social sciences to understand and quantify 
dependencies among different factors. 
Correlation analysis helps in determining the strength and direction of a relationship 
between two variables, indicating whether they move together or in opposite directions. 
However, it does not imply causation. On the other hand, regression analysis not only 
assesses the relationship but also provides a mathematical model to predict one variable 
based on another. This makes regression an essential tool in predictive analytics and 
decision-making processes. 
By understanding correlation and regression, analysts can make informed conclusions 
about data trends, develop predictive models, and enhance decision-making strategies in 
both academic research and practical applications.  

Correlation Analysis 
Correlation is a statistical technique to ascertain the association or relationship between two 
or more variables. Correlation analysis is a statistical technique to study the degree and 
direction of relationship between two or more variables. A correlation coefficient is a 
statistical measure of the degree to which changes to the value of one variable predict 
change to the value of another. When the fluctuation of one variable reliably predicts a 
similar fluctuation in another variable, there’s often a tendency to think that means that the 
change in one causes the change in the other. 

Uses of correlations: 
1. Correlation analysis helps inn deriving precisely the degree and the direction of such 
relationship. 
2. The effect of correlation is to reduce the range of uncertainty of our prediction. The 
prediction based on correlation analysis will be more reliable and near to reality. 
3. Correlation analysis contributes to the understanding of economic behaviour, aids in 
locating the critically important variables on which others depend, may reveal to the 
economist the connections by which disturbances spread and suggest to him the paths 
through which stabilizing farces may become effective. 
4. Economic theory and business studies show relationships between variables like price 
and quantity demanded advertising expenditure and sales promotion measures etc. 
5. The measure of coefficient of correlation is a relative measure of change. 

Types of Correlation: 
Correlation is described or classified in several different ways. Three of the most important 
are: 
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I. Correlation on the basis of degree: Whether correlation is positive (direct) or negative 
(in-versa) would depend upon the direction of change of the variable. 
Positive Correlation: If both the variables vary in the same direction, correlation is said to 
be positive. It means if one variable is increasing, the other on an average is also increasing 
or if one variable is decreasing, the other on an average is also deceasing, then the 
correlation is said to be positive correlation. For example, the correlation between heights 
and weights of a group of persons is a positive correlation. 

Height (cm) : X  158  160  163  166  168  171  174  176 

Weight (kg) : Y  60  62  64  65  67  69  71  72 

Negative Correlation: If both the variables vary in opposite direction, the correlation is 
said to be negative. If means if one variable increases, but the other variable decreases or 
if one variable decreases, but the other variable increases, then the correlation is said to be 
negative correlation. For example, the correlation between the price of a product and its 
demand is a negative correlation. 

Price of Product (Rs. Per Unit) : X  6  5  4  3  2  1 

Demand (In Units) : Y  75  120  175  250  215  400 

 

  
a. Positive correlation                                        b. negative correlation 
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Zero Correlation: Actually it is not a type of correlation but still it is called as zero or no 
correlation. When we don’t find any relationship between the variables then, it is said to be 
zero correlation. It means a change in value of one variable doesn’t influence or change the 
value of other variable. For example, the correlation between weight of person and 
intelligence is a zero or no correlation. 
II. Correlation on the basis of number of variables: The distinction between simple, 
partial and multiple correlation is based upon the number of variables studied. 
Simple Correlation: When only two variables are studied, it is a case of simple correlation. 
For example, when one studies relationship between the marks secured by student and the 
attendance of student in class, it is a problem of simple correlation. 
Partial Correlation: In case of partial correlation one studies three or more variables but 
considers only two variables to be influencing each other and the effect of other influencing 
variables being held constant. For example, in above example of relationship between 
student marks and attendance, the other variable influencing such as effective teaching of 
teacher, use of teaching aid like computer, smart board etc. are assumed to be constant. 
III. Correlation on the basis of linearity: Depending upon the constancy of the ratio of 
change between the variables, the correlation may be Linear or Non-linear Correlation. 
Linear Correlation: If the amount of change in one variable bears a constant ratio to the 
amount of change in the other variable, then correlation is said to be linear. If such variables 
are plotted on a graph paper all the plotted points would fall on a straight line. For example: 
If it is assumed that, to produce one unit of finished product we need 10 units of raw 
materials, then subsequently to produce 2 units of finished product we need double of the 
one unit. 

Raw material : X  10  20  30  40  50  60 

Finished Product : Y  2  4  6  8  10  12 

 
Non-linear Correlation: If the amount of change in one variable does not bear a constant 
ratio to the amount of change to the other variable, then correlation is said to be non-linear. 
If such variables are plotted on a graph, the points would fall on a curve and not on a straight 
line. For example, if we double the amount of advertisement expenditure, then sales volume 
would not necessarily be doubled. 

Advertisement Expenses : X  10  20  30  40  50  60 

Sales Volume : Y  2  4  6  8  10  12 

 

Methods of measurement of correlation: 
Quantification of the relationship between variables is very essential to take the benefit of 
study of correlation. For this, we find there are various methods of measurement of 
correlation, which can be represented as given below: 
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1. Scatter plot:  
Scatter Plots (also called scatter diagrams) are used to graphically investigate the 
possible relationship between two variables without calculating any numerical value. 
In this method, the values of the two variables are plotted on a graph paper. One is taken 
along the horizontal (X-axis) and the other along the vertical (Y-axis). By plotting the 
data, we get points (dots) on the graph which are generally scattered and hence the name 
‘Scatter Plot’. The manner in which these points are scattered, suggest the degree and 
the direction of correlation. The degree of correlation is denoted by ‘r’ and its direction 
is given by the signs positive and negative. 
A scatter diagram reveals whether the movements in one series are associated with 
those in the other series. 
• Perfect Positive Correlation: In this case, the points will form on a straight line falling 
from the lower left hand corner to the upper right hand corner. 
• Perfect Negative Correlation: In this case, the points will form on a straight line rising 
from the upper left hand corner to the lower right hand corner. 
• High Degree of Positive Correlation: In this case, the plotted points fall in a narrow 
band, wherein points show a rising tendency from the lower left hand corner to the 
upper right hand corner. 
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•High Degree of Negative Correlation: In this case, the plotted points fall in a narrow 
band, wherein points show a declining tendency from upper left hand corner to the 
lower right hand corner. 
• Low Degree of Positive Correlation: If the points are widely scattered over the 
diagrams, wherein points are rising from the left hand corner to the upper right hand 
corner. 
• Low Degree of Negative Correlation: If the points are widely scattered over the 
diagrams, wherein points are declining from the upper left hand corner to the lower 
right hand corner. 
• Zero (No) Correlation: When plotted points are scattered over the graph haphazardly, 
then it indicates that there is no correlation or zero correlation between two variables. 

 
2. Karl Pearson’s coefficient of correlation:  
Karl Pearson’s method of calculating coefficient of correlation is based on the 
covariance of the two variables in a series. This method is widely used in practice and 
the coefficient of correlation is denoted by the symbol “r”. If the two variables under 
study are X and Y, the following formula suggested by Karl Pearson can be used for 
measuring the degree of relationship of correlation. 
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Illustration 01: From following information find the correlation coefficient between 
advertisement expenses and sales volume using Karl Pearson’s coefficient of correlation 
method. 

Firm  1  2  3  4  5  6  7  8  9  10 

Advertisement Exp. (Rs. In Lakhs)  11  13  14  16  16  15  15  14  13  13 

Sales Volume (Rs. In Lakhs)  50  50  55  60  65  65  65  60  60  50 

 
Solution: Let us assume that advertisement expenses are variable X and sales volume are 
variable Y. Calculation of Karl Pearson’s coefficient of correlation 

 
Interpretation: From the above calculation it is very clear that there is high degree of 
positive correlation i.e. r = 0.7866, between the two variables. i.e. Increase in 
advertisement expenses leads to increased sales volume. 

3. Spearman’s Rank Coefficient of Correlation: 
When quantification of variables becomes difficult such beauty of female, leadership 
ability, knowledge of person etc, then this method of rank correlation is useful which was 
developed by British psychologist Charles Edward Spearman in 1904. In this method ranks 
are allotted to each element either in ascending or descending order. The correlation 
coefficient between these allotted two series of ranks is popularly called as “Spearman’s 
Rank Correlation” and denoted by “R”. 
To find out correlation under this method, the following formula is used. 
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2

3

6
R  1  

D
N N

= −
−

∑  where D =Difference of the ranks between paired items in two series. 

                                         N = Number of pairs of ranks 
In case of tie in ranks or equal ranks: 
In some cases it may be possible that it becomes necessary to assign same rank to two or 
more elements or individual or entries. In such situation, it is customary to give each 
individual or entry an average rank. For example, if two individuals are ranked equal to 5th 
place, then both of them are allotted with common rank (5+6)/2 = 5.5 and if three are ranked 
in 5th place, then they are given the rank of (5+6+7)/3 = 6. It means where two or more 
individuals are to be ranked equal, the rank assigned for the purpose of calculating 
coefficient of correlation is the average of the ranks with these individual or items or entries 
would have got had they differed slightly with each other. 
Where equal ranks are assigned to some entries, an adjustment factor is to be added to the 
value of 6∑D2 in the above formula for calculating the rank coefficient correlation. This 
adjustment factor is to be added for every repetition of rank. 

3
1 1

1Adjustment factor (m m )
12

= −  

where, m = number of items whose rank are common. For example, if a particular rank 
repeated two times then m=2 and if it repeats three times then m= 3 and so on. 
Hence the above formula can be re-written as follows: 

 
Illustration 02: 
Find out spearman’s coefficient of correlation between the two kinds of assessment of 
graduate students’ performance in a college. 

Name of students  A  B  C  D  E  F  G  H  I 
Internal Exam  51  68  73  46  50  65  47  38  60 
External Exam  49  72  74  44  58  66  50  30  35 

Solution: 
Calculation of Spearman’s Rank Coefficient of Correlation 

Name  Internal 
Exam  

Ranks 
(R1)  

External 
Exam  

Ranks 
(R2)  

D = R1 -
R2  D2 

A  51  5  49  6  -1  1 
B  68  2  72  2  0  0 
C  73  1  74  1  0  0 
D  46  8  44  7  1  1 
E  50  6  58  4  2  4 
F  65  3  66  3  0  0 
G  47  7  50  5  2  4 
H  36  9  30  9  0  0 
I  60  4  35  8  -4  16 
     ∑D2 = 26 
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Interpretation: From the above calculation it is very clear that there is high degree of 
positive correlation i.e. R = 0.7833, between two exams. It means there is a high degree 
of positive correlation between the internal exam and external exam of the students. 

Properties of Coefficient of Correlation: 
1. The coefficient of correlation always lies between – 1 to +1, symbolically it can be 
written as – 1 ≤ r ≤ 1. 
2. The coefficient of correlation is independent of change of origin and scale. 
3. The coefficient of correlation is a pure number and is independent of the units of 
measurement. It means if X represent say height in inches and Y represent say weights in 
kgs, then the correlation coefficient will be neither in inches nor in kgs but only a pure 
number. 
4. The coefficient of correlation is the geometric mean of two regression coefficient, 
symbolically   xy yxr b b= ∗  

5. If X and Y are independent variables then coefficient of correlation is zero. 

Regression analysis: 
A study of measuring the relationship between associated variables, wherein one variable 
is dependent on another independent variable, called as Regression. It is developed by Sir 
Francis Galton in 1877 to measure the relationship of height between parents and their 
children. 
Regression analysis is a statistical tool to study the nature and extent of functional 
relationship between two or more variables and to estimate (or predict) the unknown values 
of dependent variable from the known values of independent variable. 
The variable that forms the basis for predicting another variable is known as the 
Independent Variable and the variable that is predicted is known as dependent variable. For 
example, if we know that two variables price (X) and demand (Y) are closely related we 
can find out the most probable value of X for a given value of Y or the most probable value 
of Y for a given value of X. Similarly, if we know that the amount of tax and the rise in the 
price of a commodity are closely related, we can find out the expected price for a certain 
amount of tax levy. 
Components in regression analysis: 
A typical regression model looks like  

 
Independent/Explanatory/ Regressor /Predictor: The variable which influences the value or 
is used for prediction. It is denoted as “x”. 
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Dependent/regressed/ Explained variable: The variable whose value is influenced or is to 
be predicted. It is denoted as “y”. 
In linear regression equation contains one independent variable, one constant and 
coefficient (also known as weight) and we are trying to predict dependent variable 

Uses of Regression Analysis: 
1. It provides estimates of values of the dependent variables from values of independent 
variables. 
2. It is used to obtain a measure of the error involved in using the regression line as a basis 
for estimation. 
3. With the help of regression analysis, we can obtain a measure of degree of association 
or correlation that exists between the two variables. 
4. It is highly valuable tool in economies and business research, since most of the problems 
of the economic analysis are based on cause and effect relationship. 

Regression Lines and Regression Equation: 
Regression lines and regression equations are used synonymously. Regression equations 
are algebraic expression of the regression lines. Let us consider two variables: X & Y. If y 
depends on x, then the result comes in the form of simple regression. If we take the case of 
two variable X and Y, we shall have two regression lines as the regression line of X on Y 
and regression line of Y on X. The regression line of Y on X gives the most probable value 
of Y for given value of X and the regression line of X on Y given the most probable value 
of X for given value of Y. Thus, we have two regression lines. However, when there is 
either perfect positive or perfect negative correlation between the two variables, the two 
regression line will coincide, i.e. we will have one line. If the variables are independent, r 
is zero and the lines of regression are at right angles i.e. parallel to X axis and Y axis. 
Therefore, with the help of simple linear regression model we have the following two 
regression lines 
1. Regression line of Y on X: This line gives the probable value of Y (Dependent 
variable) for any given value of X (Independent variable). 

Regression line of Y on X  
OR  

:  
:  

Y – Ẏ = byx (X –Ẋ) 
Y = a + bX 

2. Regression line of X on Y: This line gives the probable value of X (Dependent 
variable) for any given value of Y (Independent variable). 

Regression line of X on Y  
OR  

:  
:  

X – Ẋ = bxy (Y –Ẏ) 
X = a + bY 

In the above two regression lines or regression equations, there are two 
regression parameters, which are “a” and “b”. Here “a” is unknown constant and “b” 
which is also denoted as “byx” or “bxy”, is also another unknown constant popularly 
called as regression coefficient. Hence, these “a” and “b” are two unknown constants 
(fixed numerical values) which determine the position of the line completely. If the 
value of either or both of them is changed, another line is determined. The parameter 
“a” determines the level of the fitted line (i.e. the distance of the line directly above or 
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below the origin). The parameter “b” determines the slope of the line (i.e. the change 
in Y for unit change in X). 
If the values of constants “a” and “b” are obtained, the line is completely 
determined. But the question is how to obtain these values. The answer is provided by 
the method of least squares. With the little algebra and differential calculus, it can be 
shown that the following two normal equations, if solved simultaneously, will yield 
the values of the parameters “a” and “b”. 
Two normal equations: 

 
This above method is popularly known as direct method, which becomes quite 
cumbersome when the values of X and Y are large. This work can be simplified if 
instead of dealing with actual values of X and Y, we take the deviations of X and Y 
series from their respective means. 
 In that case: 
Regression equation Y on X: 

( ) ( )     will change to  –      –yxY a bX Y Y b X X= + =     

Regression equation X on Y:   

( ) ( )    will change to  –      –  xyX a bY X X b Y Y= + =     

In this new form of regression equation, we need to compute only one 
parameter i.e. “b”. This “b” which is also denoted either “byx” or “bxy” which is called as 
regression coefficient. 
Regression Coefficient: The quantity “b” in the regression equation is called as the 
regression 
coefficient or slope coefficient. Since there are two regression equations, therefore, we 
have two regression coefficients. 

1. Regression Coefficient X on Y, symbolically written as “bxy” 
2. Regression Coefficient Y on X, symbolically written as “byx 

Different formula’s used to compute regression coefficients: 
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Assumptions of Linear Regression 

• Linearity: The relationship between X and Y is linear. 
• Independence: Observations are independent. 
• Homoscedasticity: Constant variance of residuals. 
• Normality: Residuals are normally distributed. 

Properties of Regression Coefficients: 
1. The coefficient of correlation is the geometric mean of the two regression 

coefficients. Symbolically   xy yxr b b= ∗  
2. If one of the regression coefficients is greater than unity, the other must be less than 

unity, since the value of the coefficient of correlation cannot exceed unity. For 
example, if bxy = 1.2 and byx = 1.4 “r” would be = √1.2 ∗ 1.4 = 1.29, which is not 
possible. 

3.  Both the regression coefficient will have the same sign. i.e. they will be either 
positive or negative. In other words, it is not possible that one of the regression 
coefficients are having minus sign and the other plus sign. 

4. The coefficient of correlation will have the same sign as that of regression 
coefficient, i.e. if regression coefficient has a negative sign, “r” will also have 
negative sign and if the regression coefficient has a positive sign, “r” would also be 
positive. For example, if bxy = -0.2 and byx = -0.8 then r = - √0.2 ∗ 0.8 = – 0.4 

5. The average value of the two regression coefficient would be greater than the value 
of coefficient of correlation. In symbol (bxy + byx) / 2 > r. For example, if bxy = 0.8 
and byx = 0.4 then average of the two values = (0.8 + 0.4) / 2 = 0.6 and the value of 
r = r = √0.8 ∗ 0.4 = 0.566 which less than 0.6. 

6. Regression coefficients are independent of change of origin but not scale. 

Illustration 03: 
After investigation it has been found the demand for automobiles in a city depends mainly, 
if not entirely, upon the number of families residing in that city. Below are the given figures 
for the sales of automobiles in the five cities for the year 2019 and the number of families 
residing in those cities 

City  No. of Families (in lakhs): X  Sale of automobiles (in ‘000): Y 

Belagavi  70  25.2 

Bangalore  75  28.6 

Hubli  80  30.2 

Kalaburagi  60  22.3 

Mangalore  90  35.4 

Fit a linear regression equation of Y on X by the least square method and estimate the sales 
for the year 2020 for the city Belagavi which is estimated to have 100 lakh families 
assuming that the same relationship holds true. 

Solution:  
Calculation of Regression Equation 

City  X  Y  X2  XY 
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Belagavi  70  25.2  4900  1764 
Bangalore  75  28.6  5625  2145 
Hubli  80  30.2  6400  2416 
Kalaburagi  60  22.3  3600  1338 
Mangalore  90  35.4  8100  3186 
 375  141.7  28,625  10,849 
 ∑X  ∑Y  ∑X2  ∑XY 

Regression equation of Y on X:  Y = a + bX 

The two normal equations are:  
∑Y = Na + b∑X 
∑XY = a∑X + b∑X2 

Substituting the values in above normal equations, we get 
141.7 = 5a + 375*b                                                           ..... (i) 
10849= 375*a + 28625*b                                                   ..... (ii) 

Let us solve these equations (i) and (ii) by simultaneous equation method. Multiply 
equation (i) by 75 we get 10627.5 = 375a + 28125*b 
Now rewriting these equations: 

 
Therefore, now we have -221.5 = -500*b, this can be rewritten as 500*b = 221.5 
Now, b =  0.443 
Substituting the value of b in equation (i), we get, 

 
Thus we got the values of a = -4.885 and b = 0.443 
Hence, the required regression equation of Y on X: 

Y = a + bX => Y = -4.885 + 0.443X 
Estimated sales of automobiles (Y) in city Belagavi for the year 2020, where number of 
families (X) are 100(in lakhs): 

Y = -4.885 + 0.443X 
Y = -4.885 + (0.443 * 100) 
Y = -4.885 + 44.3 
Y = 39.415 (‘000) 
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Means sales of automobiles would be 39,415 when number of families are 100,00,000. 

Types of regression models: 
Linear regression model: A linear regression model is used to depict a relationship 
between variables which are proportional to each other. Meaning, the dependent variable 
increases/decreases with the independent variable. In the graphical representation, it has a 
straight linear line plotted between the variables. Even if the points are not exactly in a 
straight line (which is always the case) we can still see a pattern and make sense out of it. 
Example: As the age of a person increases, the level of glucose in their body increases as 
well. 
Multiple regression model: A multiple regression model is used when there is more than 
one independent variable affecting a dependent variable. While predicting the outcome 
variable, it is important to measure how each of the independent variables moves in their 
environment and how their changes will affect the output or target variable. Example: 
Chances of a student failing their test can be dependent on various input variables like hard 
work, family issues, health issues, etc.  
Non-linear regression model: In the non-linear regression model, the graph doesn’t show 
a linear progression. Depending on how the response variable reacts to the input variable, 
the line will rise or fall showing the height or depth of the effect of the response variable. 
To know that a non-linear regression model is the best fit for your scenario, make sure you 
look into your variables and their patterns. If you see that the response variable is showing 
not so constant output to the input variable, you can choose to use a non-linear model for 
your problem. Example: A patient’s response to treatment can be good or bad depending 
on their body tendency and willpower.  

 
Distinction between Correlation and Regression 

Sl No  Correlation  Regression 

1  It measures the degree and direction 
of relationship between the variables. 

It measures the nature and extent of 
average relationship between two or 
more variables in terms of the original 
units of the data 

2  It is a relative measure showing 
association between the variables. 

It is an absolute measure of 
relationship. 

3  
Correlation Coefficient is 
independent 
of change of both origin and scale. 

Regression Coefficient is independent 
of change of origin but not scale. 

4  
Correlation Coefficient is 
independent 
of units of measurement. 

Regression Coefficient is not 
independent of units of measurement. 

5  
Expression of the relationship 
between the variables ranges from –1 
to +1. 

Expression of the relationship 
between the variables may be in any of the 
forms like: 
Y = a + bX 
Y = a + bX + cX2 

 It is not a forecasting device. 
It is a forecasting device which can be 
used to predict the value of dependent 
variable from the given value. 
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There may be zero correlation such as 
weight of wife and income of 
husband. 

There is nothing like zero regression 
independent variable. 

 
Conclusion: In correlation analysis, when we are keen to know whether two variables 
under study are associated or correlated and if correlated what is the strength of correlation. 
The best measure of correlation is proved by Karl Pearson’s Coefficient of Correlation. 
However, one severe limitation of this method is that it is applicable only in case of a linear 
relationship between two variables. If two variables say X and Y are independent or not 
correlated, then the result of correlation coefficient is zero. 
Correlation coefficient measuring a linear relationship between the two variables indicates 
the amount of variation one variable accounted for by the other variable. A better measure 
for this purpose is provided by the square of the correlation coefficient, known as 
“coefficient of determination”. This can be interpreted as the ratio between the explained 
variance to total variance: 

2 Explained variance
Total variance

r =  Similarly, Coefficient of non-determination = (1 – r2). 

Regression analysis is concerned with establishing a functional relationship between two 
variables and using this relationship for making future projection. This can be applied, 
unlike correlation for any type of relationship linear as well as curvilinear. The two lines 
of regression coincide i.e. become identical when r= -1 or +1 in other words, there is a 
perfect negative or positive correlation between the two variables under discussion if r = 0, 
then regression lines are perpendicular to each other. 
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1. Overview and Definition 

Regression analysis is a fundamental statistical technique used to model and analyze the 
relationships between dependent and independent variables. It is widely used in various 
fields such as economics, finance, machine learning, and social sciences to predict 
outcomes and understand relationships between variables. 

Regression analysis helps in: 

1. Understanding the relationship between one or more independent variables and a 
dependent variable. 

2. Predicting the dependent variable based on the values of independent variables. 

3. Identifying trends and patterns in data. 

4. Evaluating the strength of relationships between variables. 

5. Making data-driven decisions. 

There are several types of regression analyses, including: 

Linear Regression – Establishes a linear relationship between independent and dependent 
variables. The simplest form of regression analysis involves a single independent variable 
and is expressed as: 

𝑦 ൌ 𝛽଴ ൅ 𝛽ଵ𝑥 ൅ 𝜖 

where: 

o 𝑦 is the dependent variable, 

o 𝑥 is the independent variable, 

o 𝛽଴ is the 𝑦 -intercept, 

o 𝛽ଵ is the slope coefficient, 

o 𝜖 is the error term. 

Multiple Linear Regression  

Extends simple linear regression to multiple independent variables, expressed as: 

𝑦 ൌ 𝛽଴ ൅ 𝛽ଵ𝑥ଵ ൅ 𝛽ଶ𝑥ଶ ൅ ⋯ ൅ 𝛽௡𝑥௡ ൅ 𝜖 

where 𝑥ଵ, 𝑥ଶ, … 𝑥௡ are independent variables and 𝛽଴, 𝛽ଵ, … , 𝛽௡ are corresponding 
coefficients. 

 

Key Assumptions of Linear Regression 

1. Linearity – The relationship between dependent and independent variables is linear. 

2. Independence – Observations are independent of each other. 
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3. Homoscedasticity – The variance of residuals is constant across all levels of 
independent variables. 

4. Normality – Residuals should be normally distributed. 

5. No Multicollinearity – Independent variables should not be highly correlated with 
each other. 

 

Model Evaluation Metrics 

To assess the performance of a regression model, the following metrics are commonly used: 

Mean Squared Error (MSE):    𝑀𝑆𝐸 ൌ  ଵ

௡
∑ ሺ𝑦௜ െ 𝑦పෝሻଶ௡

௜ୀଵ  

R-squared (𝑅ଶ) Score: 𝑅ଶ ൌ 1 െ
∑ ሺ௬೔ି௬ഢෝ ሻమ೙

೔సభ

∑ ሺ ௬೔ି ௬ഢ෭ ሻమ೙
೔సభ

 

Where 𝑦పෝ  is the predicted value and 𝑦ప෭  is the mean of observed values. 

 

2. Residual Diagnostics in Regression Analysis 

Residual diagnostics in regression analysis is a crucial process used to evaluate whether a 
regression model meets its underlying assumptions and accurately describes the 
relationship between the dependent and independent variables. Residuals, defined as the 
differences between observed and predicted values, play a significant role in assessing 
model adequacy. The residual for an individual observation is given by: 

𝑒௜ ൌ 𝑦௜ െ 𝑦పෝ  

where: 

 𝑒௜ is the residual (error term), 

 𝑦௜ is the actual observed value, and 

 𝑦పෝ  is the predicted value from the regression model. 

Residual diagnostics involve analyzing these residuals using various techniques to identify 
issues such as non-linearity, heteroscedasticity (non-constant variance), autocorrelation, 
and violations of normality. If residuals exhibit systematic patterns, it suggests that the 
model may not be properly specified, and improvements or transformations might be 
necessary. 

Importance of Residual Diagnostics 

Residual diagnostics are essential for validating a regression model and ensuring its 
reliability for prediction and inference. Some key reasons why residual diagnostics are 
important include: 

 Checking Linearity Assumption 
Regression models, especially linear regression, assume a linear relationship between 
independent and dependent variables. If residuals show a systematic pattern (e.g., a 
curve), it indicates a potential non-linear relationship, suggesting that polynomial terms 
or transformations may be required. 

 Detecting Heteroscedasticity (Variance Issues) 
Homoscedasticity (constant variance of residuals) is a key assumption in regression. If 
residual variance changes with predicted values (e.g., forming a funnel shape), it 
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suggests heteroscedasticity, which can lead to inefficient and biased parameter 
estimates. 

 Ensuring Normality of Residuals 
Many inferential techniques (e.g., hypothesis tests and confidence intervals) rely on the 
assumption that residuals follow a normal distribution. Skewed or heavy-tailed residual 
distributions indicate potential violations, affecting statistical inference. 

 Identifying Autocorrelation 
In time-series and sequential data, residuals should not be correlated with one another. 
The presence of autocorrelation (systematic patterns in residuals over time) violates this 
assumption, requiring correction through techniques like differencing or autoregressive 
modelling. 

 Detecting Outliers and Influential Observations 
Outliers and highly influential data points can disproportionately affect model 
estimates. Residual analysis helps in identifying these points, allowing analysts to 
decide whether to remove or adjust them. 

 Improving Model Fit and Predictive Accuracy 
A well-diagnosed regression model ensures robust and reliable predictions. Addressing 
residual issues can lead to a better-fitting model, reducing errors and improving 
generalizability to new data. 

Residual diagnostics act as a quality check in regression analysis, ensuring that the model 
is statistically sound and interpretable. Without proper residual analysis, incorrect 
conclusions may be drawn, leading to poor decision-making based on flawed models. 

 

3. Important Residual Diagnostic Statistics in Regression Analysis 

Residual diagnostics involve several statistical measures that help assess the validity of a 
regression model. These statistics help detect issues such as non-linearity, 
heteroscedasticity, autocorrelation, and influential data points. Below are some key residual 
diagnostic statistics: 

 Mean of Residuals: The residuals should have a mean close to zero. A nonzero mean 
suggests model misspecification, such as missing explanatory variables or incorrect 
functional form. 

𝜀 ൌ  
1
𝑛

෍ 𝜀௜

௡

௜ୀଵ

 

where 𝜀௜ ൌ 𝑦௜ െ 𝑦పෝ  are the residuals. 

 Standard Deviation of Residuals: Measures the spread of residuals around their mean 
(ideally zero). High residual variability indicates poor model fit. 

𝜎ఌ ൌ ඨ
∑ሺ𝜀௜ െ 𝜀௜ሻ

𝑛 െ 1
 

 Residual Sum of Squares (RSS): Represents the total variation in residuals. Lower 
RSS suggests a better-fitting model. 

𝑅𝑆𝑆 ൌ ෍ሺ𝜀௜ሻଶ

௡

௜ୀଵ
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 Durbin-Watson (DW) Statistic: The Durbin-Watson (DW) statistic is a crucial test 
used in regression analysis to detect autocorrelation (serial correlation) in the 
residuals. Autocorrelation occurs when residuals from one observation are correlated 
with residuals from another, which violates the assumption of independence in 
regression models, particularly in time-series data. 

 
Understanding Autocorrelation 
 Positive Autocorrelation (0 < DW < 2): Residuals follow a pattern where an increase 

in one residual is likely to be followed by another increase. This suggests that the 
model may be missing important lagged effects. 
 

 Negative Autocorrelation (2 < DW < 4): Residuals alternate in sign, meaning an 
increase is often followed by a decrease, and vice versa. 
 

 No Autocorrelation (DW≈2): Residuals are independent, meaning no systematic 
pattern exists. 

Autocorrelation is problematic because it can: 

 Lead to inefficient and biased standard errors. 
 Affect hypothesis testing, making p-values unreliable. 
 Reduce the predictive power of the model. 

The Durbin-Watson statistic is calculated as: 

𝐷𝑊 ൌ
∑ ሺ𝜀௜ െ 𝜀௜ିଵሻଶ௡

௜ୀଶ

∑ ሺ𝜀௜ሻଶ௡
௜ୀଵ

 

where: 𝜀௜ are the residuals from the regression model,  n is the number of observations. 

The numerator measures the squared differences between consecutive residuals, while the 
denominator accounts for the total squared residuals. 

Interpretation of Durbin-Watson Statistic 

DW Value Interpretation 

DW≈2 No autocorrelation (ideal condition). 

0<DW<2 Positive autocorrelation (common in time-series data). 

2<DW<4 Negative autocorrelation (rare but possible). 

DW≈0 Strong positive autocorrelation (problematic). 

DW≈4 Strong negative autocorrelation (problematic). 

A DW value close to 2 indicates that the residuals are randomly distributed and that there 
is no significant autocorrelation. Values deviating significantly from 2 suggest issues that 
need correction. 

Suppose we run a regression model and obtain residuals. If we calculate the Durbin-
Watson statistic and get DW = 1.1, this suggests positive autocorrelation. To address 
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this, we might introduce lagged variables or apply the Cochrane-Orcutt correction to 
improve the model’s reliability 

How to Handle Autocorrelation 

If the Durbin-Watson statistic suggests autocorrelation, you can address it using the 
following approaches: 

 Add Lagged Variables: Include past values of dependent or independent variables to 
account for time-related dependencies. 

 Use Generalized Least Squares (GLS): Adjusts the standard regression model to 
handle correlated errors. 

 Apply the Cochrane-Orcutt Method: Iteratively estimates and corrects for 
autocorrelation. 

 Difference the Data: Subtract the previous observation from the current observation to 
remove systematic patterns. 

 Use Time-Series Models: If the data is time-dependent, models like ARIMA 
(AutoRegressive Integrated Moving Average) can better capture autocorrelation. 

The Durbin-Watson test is an essential diagnostic tool in regression analysis, particularly 
for time-series data. It ensures that residuals remain independent, preserving the statistical 
validity of hypothesis testing and model predictions. If autocorrelation is detected, 
corrective measures should be applied to improve the regression model's accuracy and 
efficiency. 

 Breusch-Pagan Test for Heteroscedasticity 

The Breusch-Pagan (BP) test is a statistical test used to detect heteroscedasticity in a 
regression model. Heteroscedasticity occurs when the variance of the residuals (errors) is 
not constant across different levels of the independent variables. This violates a key 
assumption of Ordinary Least Squares (OLS) regression, which assumes that residuals 
have a constant variance (homoscedasticity). 

Heteroscedasticity 

In an ideal regression model, the residuals should be homoscedastic, meaning they exhibit 
a uniform spread across all levels of the independent variables. Heteroscedasticity means 
that the spread of residuals changes systematically, which can lead to inefficient estimates 
and unreliable hypothesis tests. 

Common Causes of Heteroscedasticity: 

 Omitted Variables: If relevant variables are missing, the model may fail to capture all 
systematic variations. 

 Non-Linear Relationships: If the relationship between variables is not linear but is 
modeled as linear, residual variance may increase. 

 Data with Large Differences in Scale: If some observations have much higher values 
than others, residual variance might not be constant. 

 Time-Series Data Issues: Financial and economic data often show increasing variance 
over time.  
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Effects of Heteroscedasticity: 

 The coefficient estimates remain unbiased, but their standard errors are 
incorrect, leading to misleading statistical inferences. 

 Confidence intervals and hypothesis tests (e.g., t-tests and F-tests) become 
unreliable. 

 Prediction accuracy decreases, particularly for extreme values. 
 
 
 Breusch-Pagan Test: The Method 

The Breusch-Pagan test examines whether the residual variance depends on the 
independent variables. It does this by testing if the squared residuals are systematically 
related to one or more independent variables. 

Step 1 Fit the Original Regression Model 

First, estimate the standard OLS regression model: 

𝑦 ൌ 𝛽଴ ൅ 𝛽ଵ𝑥ଵ ൅ 𝛽ଶ𝑥ଶ ൅ ⋯ ൅ 𝛽௡𝑥௡ ൅ 𝜖 

where ε are the residuals. 

Step 2 Compute the Squared Residuals 

Calculate the squared residuals from the regression model: 

𝜀௜̂
ଶ ൌ ሺ𝑦௜ െ 𝑦పෝሻଶ 

If heteroscedasticity is present, these squared residuals will systematically increase or 
decrease with the independent variables.  

Step 3: Regress the Squared Residuals on Independent Variables 

Run the following auxiliary regression: 

𝜀௜̂
ଶ ൌ 𝛾଴ ൅ 𝛾ଵ𝑥ଵ ൅ 𝛾ଶ𝑥ଶ൅. . . ൅𝛾௡𝑥௡ ൅ 𝑢  

If the independent variables significantly explain the variance in residuals, 
heteroscedasticity is likely present. 

Step 4: Compute the Breusch-Pagan Test Statistic 

The test statistic is given by: 

𝐵𝑃 ൌ 𝑛 ൈ 𝑅ଶ  

where: 

 n is the number of observations, 

 𝑅ଶ is the coefficient of determination from the auxiliary regression. 

Step 5: Compare Against the Chi-Square Distribution 

The BP statistic follows a Chi-Square (𝝌𝟐) distribution with degrees of freedom equal to 
the number of independent variables in the auxiliary regression. 

 Null Hypothesis (𝑯𝟎): The residuals are homoscedastic (constant variance). 

 Alternative Hypothesis (𝑯𝒂): The residuals exhibit heteroscedasticity (non-
constant variance). 
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If the test statistic is significant (p-value < 0.05), we reject 𝑯𝟎, indicating that 
heteroscedasticity is present. 

Interpretation of the Breusch-Pagan Test 

Test Outcome Interpretation Implication 

p>0.05 (Fail to reject 𝐻଴) No evidence of 
heteroscedasticity 

OLS standard errors are reliable. 

p<0.05 (Reject 𝐻଴) Significant 
heteroscedasticity 
present 

OLS standard errors may be 
incorrect, and adjustments are 
needed. 

  

How to Correct Heteroscedasticity 

If heteroscedasticity is detected, there are several ways to address it: 

  Use Robust Standard Errors (Heteroscedasticity-Consistent Errors) 

Use White’s Robust Standard Errors or Huber-White standard errors to adjust for 
heteroscedasticity. 

These adjustments ensure valid hypothesis tests even when variance is not constant. 

 Transform the Dependent Variable 

Apply a log transformation or square root transformation to stabilize variance: 

𝑦∗ ൌ logሺ𝑦ሻ 

  Weighted Least Squares (WLS) 

Assign weights to observations based on the inverse of the residual variance. 

Helps in giving more weight to low-variance observations. 

  Re-specify the Model 

If a non-linear relationship exists, adding polynomial terms or interaction terms might 
improve the fit. 

  Use Generalized Least Squares (GLS) 

GLS modifies OLS to account for heteroscedasticity by transforming variables before 
estimation. 

The Breusch-Pagan test is a fundamental diagnostic tool in regression analysis, helping to 
detect heteroscedasticity. Since heteroscedasticity leads to inefficient and biased standard 
errors, failing to correct it can result in unreliable hypothesis testing and inaccurate 
predictions. If heteroscedasticity is found, analysts should consider robust standard errors, 
transformations, or alternative estimation methods such as WLS or GLS to ensure model 
reliability. 
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 Shapiro-Wilk Test (for Normality of Residuals) 

Checks if residuals follow a normal distribution, which is essential for valid hypothesis 
testing in regression. 

A small p-value (< 0.05) indicates non-normal residuals 

 

 Q-Q Plot (Quantile-Quantile Plot) 

 A graphical diagnostic tool comparing residual quantiles to a normal distribution. 

 Deviations from the 45-degree line indicate departures from normality. 

 

Residual diagnostic statistics are essential for verifying regression model assumptions and 
improving model performance. Evaluating residual behavior helps in detecting 
misspecifications, improving predictive accuracy, and ensuring reliable statistical 
inference. 
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1. Introduction 

The researchers in biological, physical and social sciences frequently collect 
measurements on several variables. Generally the data is analyzed by taking one variable 
at a time. The inferences drawn by analyzing the data for each of the variables may be 
misleading. This can best be explained from the story of the six blind persons, who tried 
to describe an elephant after each one touching and feeling a part of it. All of us know 
that they came out with six different versions of what an elephant was like, each version 
being partially correct but none was near to reality.  Therefore, the data on several 
variables should be analyzed using multivariate analytical techniques.  

Various statistical methods for describing and analyzing these multivariate data sets are 

Hotelling 2T ; Multivariate analysis of variance (MANOVA), Discriminant Analysis, 
Principal Component Analysis, Factor Analysis, Canonical Correlation Analysis, Cluster 
Analysis, etc.  In this talk, we present an overview of the multivariate analytical 
techniques.  

1. Testing of mean vector - One Sample Case 

This is useful for the situations where the data on the different variables are collected and 
it is required to test whether the sample mean vectors is equal to a specified mean vector.  
To be specific: Let n   xxx ,,, 21   be a random sample of size n is drawn from the 

population with p-dimensional mean vector 0μ  and based on this sample we want to test 

0μμ :0H  against 0μμ :1H .   

If variance covariance matrix  is known or the sample is large, 2  test is used. 

   0μxn2 -1  0μx   

with p degrees of freedom where 



n

j
jn 1

1
xx is the sample mean calculated from the 

sample, p is number of variable in the study.  

If   is not known and sample size is small. Hotelling 2T  is used.  

   00 μxsμx  12 nT  

where    






n

j

n

j
j nn 11 1

1
,

1
xxxxsxx jj .  
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pnpFT
pn

pn





,
2

)1(

)(
. 

Example 1: {Example 5.2 in Johnson and Wichern, 2002}. Perspiration from 20 healthy 
females was analyzed. Three components, 1X = sweat rate, 2X  = sodium content and 

3X = potassium content were measured and the results are presented in table 1. 

Table 1: Sweat Data 

Individual 1X (sweat rate) 2X (sodium content) 3X (potassium content) 

1 3.7 48.5 9.3 
2 5.7 65.1 8.0 
3 3.8 47.2 10.9 
4 3.2 53.2 12.0 
5 3.1 55.5 9.7 
6 4.6 36.1 7.9 
7 2.4 24.8 14.0 
8 7.2 33.1 7.6 
9 6.7 47.4 8.5 
10 5.4 54.1 11.3 
11 3.9 36.9 12.7 
12 4.5 58.8 12.3 
13 3.5 27.8 9.8 
14 4.5 40.2 8.4 
15 1.5 13.5 10.1 
16 8.5 56.4 7.1 
17 4.5 71.6 8.2 
18 6.5 52.8 10.9 
19 4.1 44.1 11.2 
20 5.5 40.9 9.4 

Test the hypothesis, 0μμ :0H  given 0μ  10504  against 01 :  H . From 

Table 1, we can calculate 

  








































 

 627658.364.580905.1

64.57884.19901.10

80905.101.10879368.2

1

1
,

965.9

400.45

640.4
1

11

n

j

n

j
j nn

xxxxsXx jj

 

and the observed T2 value is  



MULTIVARIATE ANALYSIS TECHNIQUES 

 5.3

   

 

  738774.9

158308.0

04199.0

467705.0

035.0600.4640.020

10965.9

50400.45

4640.4

627658.364.580905.1

64.57884.19901.10

80905.101.10879368.2

10965.950400.454640.420

μμ

1

1

































































00 xsxn

 

Comparing the observed 2T =9.738774 with the critical value 
 
    73.1020.3353.3

1
, 




 pnpF
pn

pn
 we see that 2T  = 9.74 < 10.73, and 

consequently we accept 0H . 

2. Testing of mean vectors - Two Sample Case 

Consider that we have two independent random samples of sizes 1n  and 2n  with mean 

vectors 1x   and  2x  and sample dispersion matrices 1s  and 2s respectively  and want to 
test the hypothesis 

 21H μμ :0   against  21H μμ :1  

1μ  and 2μ  are mean vectors of populations from which samples are drawn. If population 
dispersion matrices are unknown but same, we use 

   21
1

21
2 xxsxx 


 

pooled
21

21

nn

nn
T  

where 
   

2nn

nn

21

21
pooled 


 21 11 ss

s . 

T2 is distributed as 
 
  1,

21

21
211

2



pnnpF

pnn

pnn
 

Example 2: {Example 6.4 in Johnson and Wichern, 2002}. Samples of sizes 451 n  and 

552 n  were taken of homeowners with and without air conditioning respectively. Two 
measurements of electrical usage (is kilowatt-hours) were considered. The first is a 
measure of total on-peak consumption ( 1x ) during July and the second is a measure of 
total off-peak consumption during July. Test weather there is a difference in electrical 
consumption between those with air conditioning and those without. 
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The summary statistics given are  

55,45

5.559647.19616

7.196160.8632
,

4.731074.23823

4.238233.13825

0.355

0.130
,

6.556

4.204

21

21

21









































nn

ss

xx

 

Here the null hypothesis is 21 μμ :0H  and alternate hypothesis is 21 μμ :1H . To test 

the difference, first we calculate 

   

.
3.636615.21505

5.215057.10963

11 21















2nn

nn

21

21
pooled

ss
s

 

Now  
   

22066.16

21
1

21
2






  xxsxx pooled
21

21

nn

nn
T

 

Comparing the observed 2T  with the critical value 

 
  26.6

97

)2(98

1

2
)05.0(97.2)(1,

21

21
21





 FF

pnn

pnn
pnnp  . 

We see that the observed 26.622066.162 T , we reject the null hypothesis and 
conclude that there is a difference in electrical consumption between those with air 
conditioning and those without. 

Note:  

(i) For this testing, Mahalnobis 2D  can also be used which is a linear function of 2T  

   

2

21
1

21
2

T
nn

nn

D

21

21

pooled




  xxsxx

 

(ii) If  21 ΣΣ  , the above test cannot be used. For large sample size or dispersion 

matrices known, 2  test can be used. However, test for small sample sizes and 
dispersion matrices not known to be equal is beyond the scope of discussion. 
Readers may go through the references given at the end. 
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Steps to carry out the Analysis: Testing Mean Vector (s) (Using MS-EXCEL) 

We to use the inbuilt Functions of MS-EXCEL like Average: Mean;  VAR: Variance and 
COVAR*n/(n-1): Covariance. Correlation can be obtained using the function CORREL. 

Matrix Inverse 

Mark the area for the resultant matrix  Formula bar  =minverse (mark range of 
original matrix)  press control + shift + enter 

Matrix multiplication 

Mark the area for the resultant matrix  Formula bar  =mmult (mark range of first 
matrix, mark range of second matrix)  press control + shift + enter 

Using the matrix multiplication and matrix inversion one can easily calculate Hotelling's 
T2.  

3. Multivariate Analysis of Variance (MANOVA) 

One way Classified Data 

Consider that the random samples from each of g (say) populations using are arranged as 

Population 1: 
111211 ,,, n   xxx   

Population 2: 
222221 ,,, n   xxx   

       : 
       : 
       : 
Population g: 

ggngg    xxx ,,, 21   

Multivariate analysis of variance is used first to investigate whether the populations mean 
vectors are the same and, if not, which mean components differ significantly.  MANOVA 
is carried out under the following two assumptions: 1. Dispersion matrices of various 
populations are same. 2. Each population is multivariate normal. One-way Classified 
MANOVA Table for testing the equality of g-population mean Vectors is given below: 

 

Source of variation Degrees of freedom SSP matrix 
Population or treatment g-1 

  



g

i
iiin

1
xxxxT  

Residual (error) 




g

1i
i gn     

 


g

i

n

j
iijiij

i

1 1
xxxxR  

Total 




g

1i
i 1n     

 


g

i

n

j
ijij

i

1 1
xxxxRT  
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We reject the null hypothesis of equal mean vectors if the ratio of generalized variance 

(Wilk's lambda statistic) 
RT

R


*  is too small. The distribution of *  in different 

cases are as below. 

  



 





 











 
gng

i
i

F
g

gn
gp ,1~

*

*1

1
21  

  



 








 











 

12),1(2~
*

*1

1

1
22 gng

i
i

F
g

gn
gp  

  



 





 







 
 

1,~
*

*11
21 pnp

i
i

F
p

pn
gp  

  



 








 







 
 

22,2~
*

*12
31 pnp

i
i

F
p

pn
gp  

and for other cases    
 







 


2

1
gp

n  In   2
)1(~* gp  (approximate). 

Example 3: {Example 6.8 in Johnson and Wichern, 2002}. Consider the following 
independent samples: 

 R1 R2 R3 Total 

Population 1 








3

9
 








2

6
 








7

9
 








12

24
 

Population 2 








4

0
 








0

2
 

 








4

2
 

Population 3 








8

3
 








9

1
 








7

2
 








24

6
 

Grand Total    








40

32
 

Due to variable 1 

Sum of squares (Population) = 78
8

38

3

6

2

2

3

24 2222
  

Sum of squares (Total)           = 88
8

38
2...69

2
222   
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Sum of squares (Residual)     = 107888   (by subtraction) 

Due to variable 2 

Sum of squares (Population) = 48
8

40

3

24

2

4

3

12 2222
  

Sum of squares (Total)           = 72
8

40
7...23

2
222   

Sum of squares (Residual)     = 244872   (by subtraction) 

Due to variable 1 and 2 

Sum of cross products (Population) = 12
8

4032

3

246

2

42

3

1224












 

Sum of cross products (Total)          = 11
8

4032
72...2639 


  

Sum of cross products (Residual)    = 1)12(11    

MANOVA 

Source of  
Variation 

Degrees of 
freedom 

SSP matrix 

 
Population 

 
213   











4812

1278
 

 
Residual (error) 

 
53323   








241

110
 

 
Total 

 
71323   











7211

1188
 

To test the hypothesis 3210 :  H . We use Wilk's lambda statistic 

0385.0
6215

239

)11()72(88

)1()24(10

7211

1188

241

110

*
2

2
































RT

R
  

Since 2p  (variables) and 3g  (populations), we use the following 

19.8
0385.0

0385.01

13

138

*

*12








 


















 







 



p

pni   with a percentage point of 

an F-distribution having 8&4 21  nn  d.f. Since 01.7)01.0(19.8 8,4  F , we reject 

the null hypothesis at 1% level of significance and conclude that there exists treatment 
differences. The pairwise comparisons can be done using the contrast analysis. 
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Remark: One complication of multivariate analysis that does not arise in the univariate 
case is due to the ranks of the matrices. The rank of R should not be smaller than p or in 
other words error degrees of freedom s should be greater than or equal to p (s  p).  

For performing MANOVA using SAS, the following procedures/statements may be used. 

PROC ANOVA and PROC GLM can be used to perform analysis of variance even for 
more than one dependent variables.  PROC ANOVA performs the analysis of variance for 
balanced data whereas PROC GLM can analyze both balanced and unbalanced data.  As 
ANOVA takes into account the special features of a balanced data, it is faster and uses 
less storage than PROC GLM for balanced data.  The basic syntax of the ANOVA 
procedure is as given  

 PROC  ANOVA  <options>; 

 CLASS Variables; 

 MODEL dependents = independent variables (or effects)/ options; 

 MEANS effects / options, 

 ABSORB Variables; 

 FREQ   Variable; 

 TEST  H=effects  E= effect  M = equations/options; 

 REPEATED factor - name levels / options; 

 BY variables; 

 RUN; 

The PROC ANOVA, CLASS  and MODEL statements are must.  The other statements 
are optional.  The class statement defines the variables for classification (numeric or 
character variables - maximum characters = 16). 

PROC  GLM  for analysis of variance is similar to  PROC  ANOVA.  The statements 
listed for PROC  ANOVA   are also used for PROC GLM.  The following more 
statements can be used with PROC GLM; 

CONTRAST   ‘label’  effect  name < .... effect coefficients >  / < options>; 

ESTIMATE ‘label’ effect name < ... effect coefficients / <options>; 

ID variables; 

LSMEANS  effects </options>; 

OUTPUT <OUT = SAS-data-set > keyword = names< ... keyword=names; 

RANDOM  effects/ < options > ; 
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WEIGHT; 

However, if the MODEL statement includes more than one dependent variable, additional 
multivariate statistics can be requested with the MANOVA statement. 

When a MANOVA statement appears before the first RUN statement, GLM or ANOVA 
enters a multivariate mode with respect to the handling of missing values; observations 
with missing independent or dependent variables are excluded from the analysis.  If you 
want to use this mode of handling missing values and do not need any multivariate 
analysis, specify the MANOVA option in the PROC GLM statement. 

If both the CONTRAST and MANOVA statements are to be used, the MANOVA 
statement must appear after the CONTRAST statement.  The basic syntax of MANOVA 
statement is  

 MANOVA; 

 MANOVA < H=effects  INTERCEPT _ALL_ ><E=effect></options>; 

 MANOVA < H=effects  INTERCEPT _ALL_><E=effect> 

  <M=equation,...,equation (row-or-matrix,...,row-or-matrix)> 

  <MNAMES=names><PREFIX=name></options>; 

The terms given in the MANOVA statement are specified as follows: 

H=effects  INTERCEPT _ALL_  : specifies effects in the preceding model to use as 
hypothesis matrices.  For each H matrix (the SSCP matrix associated with that effects), 
the H=specification prints the characteristic roots and vectors of E-1H ( where E is  the 
matrix associated with the error effects), Hotelling-Lawley trace, Pillai’s trace, Wilks’ 
criterion, and Roy’s maximum root criterion with approximate F statistic.  Use the 
keyword INTERCEPT to print tests for the intercept.  To print tests  for all effects  listed 
in the MODEL statement, use the keyword _ALL_  in place of a list of effects. 

E=effect :  specifies the error effect. If we omit the E=specification, GLM uses the   error 
SSCP (residual) matrix from the analysis. 

<M=equation, ..., equation (row-or-matrix,...,row-or-matrix)> : specifies a 
transformation matrix for the dependent variables listed in the MODEL statement.  The 
equations in the M=specification are of the form 

  C1
*dependent-variableC2

*dependent-variable Cn
*dependent-variable 

where the Ci values are coefficients for the various dependent-variables. If the value of a 
given Ci is 1, it may be omitted; in other words, 1*Y is the same as Y.  Equations should 
involve two or more dependent variables. Alternatively, we can input the transformation 
matrix directly by entering the elements of the matrix with commas separating the rows, 
and parentheses surrounding the matrix.  When this alternate form of input is used, the 
number of elements in each row must equal the number  of dependent variables. Although 
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these combinations actually represent the columns of the M matrix, they are printed by 
rows. 

When we include an M=specification, the analysis requested in the MANOVA statement 
is carried out for the variables defined by the equations in the specification, not the 
original dependent variables. If M=is omitted, the analysis is performed for the original 
dependent variables in the MODEL statement.  

If an M=specification is included without either the MNAMES= or PREFIX=option, the 
variables are labelled by default as MVAR1, MVAR2, and so on. 

MNAMES= names: provides names for the variables defined by the equations in the 
M=specification. Names in the list correspond to the M=equations or the rows of the M 
matrix (as it is entered). 

PREFIX = name : is an alternative means of identifying the transformed variables defined 
by the M=specification. For example, if you specify PREFIX = DIFF, the transformed 
variables are labelled DIFF1, DIFF2, and so on. 

The following options can be used in the MANOVA statement  

CANONICAL : Prints a canonical analysis of the H and E matrices (transformed by the 
M matrix, if specified) instead of the default printout of characteristic roots and vectors. 

ETYPE=n :  specifies the type(1,2,3, or 4) of the E matrix. By default, the procedure uses 
an ETYPE=value corresponding to the highest type (largest n ) used in the analysis. 

HTYPE =n : specifies the type (1,2,3, or 4) of the H matrix. 

ORTH : requests that the transformation matrix in the M=specification of the MANOVA 
statement be orthonormalized by rows before the analysis. 

PRINTE : prints the E matrix. If the E matrix is the error SSCP (residual) matrix from the 
analysis, the partial correlations of the dependent variables given the independent 
variables are also printed. For example, the statement 

manova / printe; 

prints the error SSCP matrix and the partial correlation matrix computed from the error 
SSCP matrix. 

PRINTH : prints the H matrix (the SSCP matrix) associated with each effect specified by 
the H=specification. 

SUMMARY:  produces analysis-of-variance tables for each dependent variable. When 
no M matrix is specified, a table is printed for each original dependent variable from the 
MODEL statement; with an M matrix other than the identity, a table is printed for each 
transformed variable defined by the M matrix. 

Various ways of using a MANOVA statement are given as follows: 

proc glm; 
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     class a b; 

     model y1-y5=a b(a); 

     manova h=a e=b(a) / printh printe htype=1 etype=1; 

     manova h=b(a) / printe; 

     manova h=a e=b(a) m=y1-y2, y2-y3, y3-y4, y4-y5  prefix=diff; 

     manova h=a e=b(a) m=(1  -1  0  0  0, 

               0   1 -1  0  0,   

               0   0  1 -1  0, 

                0   0  0  1 -1) prefix=diff; 

run; 

Since this MODEL statement requests no options for type of sums of squares, GLM uses 
Type I and Type III. The first MANOVA statement specifies A as the hypothesis effect 
and B(A) as the error effect. As a result of PRINTH, the procedure prints the H matrix 
associated with the A effect; and, as a result of PRINTE, the procedure prints the E 
matrix associated with the B(A) effect. HTYPE=1 specifies a Type I H matrix, and 
ETYPE =1 specifies a Type I E matrix. 

The second MANOVA statement specifies B(A) as the hypothesis effect. Since no error 
effect is specified, GLM uses the error SSCP matrix from the  analysis as the E matrix. 
The PRINTE option prints this E matrix.  Since the E matrix is the error SSCP matrix 
from the analysis, the partial correlation matrix computed from this matrix is also printed. 

The third MANOVA statement requests the same analysis as the first MANOVA 
statement, but the analysis is carried out for variables transformed to be successive 
differences between the original dependent variables. PREFIX=DIFF labels the 
transformed variables as DIFF1, DIFF2, DIFF3, and DIFF4. 

Finally, the fourth MANOVA statement has the identical effect as the third, but it uses an 
alternative form of the M=specification. Instead of specifying a set of equations, the 
fourth MANOVA statement specifies rows of a matrix of coefficients for the five 
dependent variables. 

SPSS: To obtain MANOVA, from the menus choose Analyze  General Linear 
Models…  Multivariate… Select at least two dependent variables Optionally, one 
can specify Fixed Factor(s), Covariate(s), and WLS Weight. 

 

4. Principal Component Analysis  

The purpose of principal component analysis is to derive a small number of linear 
combinations (principal components) of a set of variables that retain as much information 
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in the original variables as possible. Often a small number of principal components can be 
used in place of the original variables for plotting, regression, clustering and so on. 
Principal component analysis can also be viewed as a technique to remove 
multicollinearity in the data.  In this technique, we transform the original set of variables 
to a new set of uncorrelated random variables.  These new variables are linear 
combinations of the originals variables and are derived in decreasing order of importance 
so that the first principal component accounts for as much as possible of the variation in 
the original data.  Let pxxxx ,...,,, 321  are variables under study, then first principal 

component may be defined as 

  ppxaxaxaz 12121111 ...  

such that variance of 1z  is as large as possible subject to the condition that 

1... 2
1

2
12

2
11  paaa  

This constraint is introduced because if this is not done, then  1zVar  can be increased 

simply by multiplying any sa j '1  by a constant factor. The second principal component is 

defined as   

  ppxaxaxaz 22221212 ...  

such that  2zVar  is as large as possible next to  1zVar  subject to the constraint that  

 1... 2
2

2
22

2
21  paaa  and   0, 21 zzCov  and so on. 

It is quite likely that first few principal components account for most of the variability in 
the original data. If so, these few principal components can then replace the initial p 
variables in subsequent analysis, thus reducing the effective dimensionality of the 
problem. An analysis of principal components often reveals relationships that were not 
previously suspected and thereby allows interpretation that would not ordinarily result. 
However, Principal Components Analysis is more of a mean to an end rather than end in 
itself because this frequently serves as intermediate steps in much larger investigations by 
reducing the dimensionality of the problem and providing easier interpretation. It is a 
mathematical technique, which does not require user to specify the statistical model or 
assumption about distribution of original variates. It may also be mentioned that principal 
components are artificial variables and often it is not possible to assign physical meaning 
to them. Further, since Principal Components Analysis transforms original set of 
variables to new set of uncorrelated variables. It is worth stressing that if the original 
variables are uncorrelated, then there is no point in carrying out the Principal Components 
Analysis. It is important to note here that the principal components depend on the scale of 
measurement.  Conventional way of getting rid of this problem is to use the standardized 
variables with unit variances.   

Example 4: Let us consider the following data on average minimum temperature  1x , 
average relative humidity at 8 hrs.  2x , average relative humidity at 14 hrs.  3x  and total 
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rainfall in cm.  4x  pertaining to Raipur district from 1970 to 1986 for kharif season from 
21st May to 7th Oct. 

 x1 x2 x3 x4 
25.0 86 66 186.49 
24.9 84 66 124.34 
25.4 77 55 98.79 
24.4 82 62 118.88 
22.9 79 53 71.88 
7.7 86 60 111.96 
25.1 82 58 99.74 
24.9 83 63 115.20 
24.9 82 63 100.16 
24.9 78 56 62.38 
24.3 85 67 154.40 
24.6 79 61 112.71 
24.3 81 58 79.63 
24.6 81 61 125.59 
24.1 85 64 99.87 
24.5 84 63 143.56 
24.0 81 61 114.97 

Mean 23.56 82.06 61.00 112.97 
S.D. 4.13 2.75 3.97 30.06 

with the variance co-variance matrix. 

 
















 



87.903

95.9275.15

82.5450.856.7

14.554.112.402.17

 

Find the eigenvalues and eigenvectors of the above matrix. Arrange the eigenvalues in 
decreasing order. Let the eigenvalues in decreasing order and corresponding eigenvectors 
are 

 993.0,103.0,061.0,006.0902.9161  1a  

 012.0,011.0,296.0,955.0375.182  2a  

 119.0,855.0,485.0,141.087.73  3a  

 001.0,509.0,820.0,260.0056.14  4a  

 

 

The principal components for this data will be  
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43214

43213

43212

43211

001.0509.082.026.0

119.0855.0485.0141.0

012.0011.0296.0955.0

993.0103.0061.0006.0

xxxxz

xxxxz

xxxxz

xxxxz









 

The variance of principal components will be eigenvalues i.e. 

        056.1,87.7,375.18,902.916 4321  zVarzVarzVarzVar  

The total variation explained by principal components is 

20.944056.187.7375.18902.9164321    

As such, it can be seen that the total variation explained by principal components is same 
as that explained by original variables. It could also be proved mathematically as well as 
empirically that the principal components are uncorrelated. 

The proportion of total variation accounted for by the principal components is 

97.0
203.944

902.916

4321

1 
 


 

Continuing, the first two components account for a proportion 

99.0
203.944

277.935

4321

21 






of the total variance. 

Hence, in further analysis, the first or first two principal components 1z  and 2z  could 
replace four variables by sacrificing negligible information about the total variation in the 
system. The scores of principal components can be obtained by substituting the values of 

ix 's in the equations of iz 's. For above data, the first two principal components for first 

observation i.e. for year 1970 can be worked out as 

383.149.186012.066011.086296.00.25955.0

380.19749.186993.066103.086061.00.25006.0

2

1




z

z
 

Similarly for the year 1971 

134.134.124012.066011.084296.09.24955.0

54.13534.124993.066103.084061.09.24006.0

2

1




z

z
 

Thus the whole data with four variables can be converted to a new data set with two 
principal components. 

 

Example 5: Consider the same data as given in Example 1. The variance-covariance 
matrix was given as 
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





















627658.364.580905.1

64.57884.19901.10

80905.101.10879368.2

Σ  

Now find the eigenvalues and eigenvectors of the above matrix. Arrange the eigenvalues 
in decreasing order. Let the eigenvalues in decreasing order and corresponding 
eigenvectors are 

 0291.0,9983.0,0508.0462.2001  1a  

 8173.0,0530.0,5737.0532.42     2a  

 5754.0,0249.0,8175.0301.13  3a  

The principal components for this data are 

 

3213

3212

3211

5754.00249.08175.0

8173.00530.05737.0

0291.09983.00508.0

xxxz

xxxz

xxxz





 

The variance of principal components will be eigenvalues i.e. 

      301.1,532.4,462.200 321  zVarzVarzVar  

The total variation explained by principal components is 

295.206301.1532.4462.200321    

As such, it can be seen that the total variation explained by principal components is same 
as that explained by original variables. It could also be proved mathematically as well as 
empirically that the principal components are uncorrelated. 

The proportion of total variation accounted for by the principal components is 

9717.0
295.206

462.200

321

1 
 


of the total variance. 

Continuing, the first two components account for a proportion 

9937.0
295.206

994.204

321

21 






of the total variance. 

Hence, in further analysis, the first or first two principal components 1z  and 2z  could 
replace four variables by sacrificing negligible information about the total variation in the 
system. The scores of principal components can be obtained by substituting the values of 

ix 's in the equations of iz 's. For above data, the first two principal components for first 

observation i.e. for first individual is 
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3.98173.05.480530.07.35737.0

3.90291.05.489983.07.30508.0

2

1




z

z
 

Similarly principal component scores for other individuals can be obtained. Thus the 
whole data with three variables can be converted to a new data set with two principal 
components. 

Following steps of SAS may be used for performing the principal component analysis. 

The PROC PRINCOMP can be used for performing principal component analysis. Raw 
data, a correlation matrix, a covariance matrix or a sum of squares and cross products 
(SSCP) matrix can be used as input data. The data sets containing eigenvalues, 
eigenvectors, and standardized or unstandardized principal component scores can be 
created as output. The basic syntax of PROC PRINCOMP is as follows: 

PROC PRINCOMP  Cov <options>; 

BY variables; 

FREQ Variable; 

PARTIAL Variables; 

VAR Variables; 

WEIGHT Variable; 

RUN; 

The PROC PRINCOMP and RUN are must. However, the VAR statement listing the 
numeric variables to be analysed is usually used alongwith PROC PRINCOMP statement. 
If the DATA= data set is TYPE=SSCP, the default set of variables does not include 
intercept. Therefore, INTERCEPT may also be included in the VAR statement.  The 
following options are available in PROC PRINCOMP. 

A. DATA SETS SPECIFICATION 

1. DATA= SAS-data-set :  names the SAS data set to be analysed.  This data set can be 
ordinary data set or a TYPE = CORR, COV, FACTOR, UCORR or UCOV data set. 

2. OUT = SAS-data-set : creates an output data set containing original data alongwith 
principal component scores. 

3. OUTSTAT-SAS-data-set : creates an output data set containing means, standard 
deviations, number of observations, correlations or covariances, eigenvalues and 
eigenvectors. 

B. ANALYTICAL DETAILS SPECIFICATION 

1. COV: computes the principal components from the covariance matrix.  The default 
option is computation of principal components using a correlation matrix. 
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2. N=: the non-negative integer equal to the number of principal components to be 
computed. 

3. NOINT : omits the intercept from the model  

4. PREFIX= name: specifies a prefix for naming the principal components.  The 
default option is PRIN1, PRIN2, ... . 

5. STANDARD (STD): standardizes the principal component scores to unit variance 
from the variance equal to corresponding eigenvalue. 

6. VARDEF=DFNWDFWEIGHT: specifies the divisor (error degree of 
freedomnumber of observationssun of weightssum of weights-1) in calculating 
variances and standard deviations.  The default option is DF.   

Besides these options NOPRINT option suppresses the output.  The other statements in 
PROC PRINCOMP are: 

By variables: obtains the separate analysis on observations in groups defined by 
variables. 

FREQ statement: It names a variable that provides frequencies of each observation in the 
data set.  Specifically, if n is the value of the FREQ variable for a given observation, then 
that observation is used ‘n’ times. 

PARTIAL Statement: used to analyze for a partial correlation or covariance matrix. 

VAR statement: Lists the numeric variables to be analysed. 

WEIGHT Statement: If we want to use relative weights for each observation in the input 
data set, place the weights in a variable in the data set and specify the name in a weight 
statement.  This is often done when the variance associated with each observation is 
different and the values of the weight variable are proportional to reciprocals of the 
variances.  The observation is used in the analysis only if the value of the WEIGHT 
statement variable is non-missing and greater than zero. 

The other closely related procedures with PROC PRINCOMP are  

PROC PRINQUAL:  It performs a principal component analysis of a qualitative data. 

PROC CORRESP:  performs correspondence analysis, which is a weighted principal 
component analysis of contingency tables. 

For detailed steps for performing principal component analysis using SAS and SPSS, a 
reference may be made to link “Analysis of Data” at Design Resources Server. SAS and 
SPSS codes can be obtained from http://www.iasri.res.in/design/Analysis of 
data/principal_component.html  

5. Canonical Correlation Analysis 

Canonical correlation is a technique for analyzing the relationship between two sets of 
variables.  Each set can contain several variables.  Simple and multiple correlation are 
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special cases of canonical correlation in which one or both sets contain a single variable.  
This analysis actually focuses on the correlation between a linear combination of the 
variables in one set and a linear combination of the variables in the second set.  The idea 
is first to determine the pair of linear combinations having the largest correlation.  Next 
we determine the pair of linear combinations having the largest correlation among all 
pairs uncorrelated with the initially selected pair.  This process continues until the 
number of pairs of canonical variables equals the number of variables in the smaller 
group.  The pairs of linear combinations are called the canonical variables and their 
correlations are called canonical correlations.  The canonical correlations measure the 
strength of association between the two sets of variables.  The maximization aspect of the 
technique represents an attempt to concentrate a high-dimensional relationship between 
two sets of variables into a few pair of canonical variables. 

The PROC CANCORR procedure tests a series of hypotheses that each canonical 
correlation and all smaller correlations are zero in population using an F-approximation.  
At least one of the two sets of the variables should have an approximate multivariate 
normal distribution.  PROC CANCORR can also perform partial canonical correlation, a 
multivariate generalization of ordinary partial correlation.  Most commonly used 
parametric statistical methods, ranging from t-tests to multivariate analysis of covariance 
are special cases of partial canonical correlations.  

6. Discriminant Analysis 

The term discriminant analysis refers to several types of analysis viz. classificatory 
discriminant analysis (used to classify observations into two or more known groups on 
the basis of one or more quantitative variables), Canonical discriminant analysis (a 
dimension reduction technique related to principal components and canonical 
correlation), Stepwise discriminant analysis (a variable selection technique i.e. to try to 
find a subset of quantitative variables that best reveals differences among the classes).    

For classificatory discriminant analysis, Fisher's Discriminant function is generally used. 
It is described in the sequel. 

Fisher's idea was to transform the multivariate observations x to univariate observations y 
such the y's derived from the populations 1  and 2  were separated as much as possible. 
Fisher's approach assumes that the populations are normal and also assumes the 
population covariance matrices are equal because a pooled estimate of common 
covariance matrix is used. 

A fixed linear combination of the x's takes the values 
111211 ,....,, nyyy for the observations 

from the first population and the values 
222221 ,....,, nyyy  for the observations from the 

second population. The separation of these two sets of univariate y's is assessed in terms 
of the differences between 1y  and 2y  expressed in standard deviation units. That is, 
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is the pooled estimate of the variance. The objective is to select the linear combination of 
the x to achieve maximum separation of the sample means 1y  and 2y . 

Result: The linear combination   xSxxxl 1
21

ˆ  pooledy  maximizes the ratio  

 
 yofvarianceSample

yofmeansamplebetweendistanceSquared  
2

2
21

ys

yy 
  

                                                                       
 

Il

xlxl
ˆˆ

ˆˆ 2
21

pooledS


  

                                                                       
 

ll

dl





ˆˆ

ˆ 2
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over all possible coefficient vectors lˆ  where  21 xxd  . The maximum of the above 

ratio is     21
1

21
2 xxSxxD  

pooled , the Mahalanobis distance. 

Fisher's solution to the separation problem can also be used to classify new observations. 
An allocation rule is as follows. 

Allocate 0x  to 1  if      21
1

210
1

210 2

1
ˆ xxSxxmxSxx  

pooledpooledy  

and to 2  if  m̂0 y  

If we assume the populations 1 and 2 are multivariate normal with a common 

covariance matrix, the a test of 210 :  H  versus 211 :  H  is accomplished by 

referring 
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to an F-distribution with p1   and 1pnn 212   degrees of freedom.  If 

0H  is rejected, we can conclude the separation between the two populations is 

significant. 

 

Following procedure statements of SAS that can be used for above discriminant analyses. 

PROC DISCRIM :  Classificatory discriminant analysis 

PROC  CANDISC :  Cannonical discriminant analysis 
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PROC  STEPDISC :  Stepwise discriminant analysis. 

SPSS: To Obtain a Discriminant Analysis, from the menus choose:  Analyze  
Classify Discriminant...  Select an integer-valued grouping variable and click Define 
Range to specify the categories of interest  Select the independent, or predictor, 
variables. (If the grouping variable does not have integer values, Automatic Recode on 
the Transform menu will create one that does. 

Example 6:  {Example 11.3 in Johnson and Wichern, 2002}. To construct a procedure 
for detecting potential hemophilia 'A'  carriers, blood samples were analyzed for two 
groups of women and measurements on two variables, )(log101 activityAHFx   and 

)(log102 antigenslikeAHFx   recorded. The first group of 301 n  women were 

selected from a population who do not carry hemophilia gene (normal group). The second 
group of 222 n  women were selected from known hemophilia 'A'  carriers (obligatory 
group). The mean vectors and sample covariance matrix are given as 













0390.0

0065.0
1x ,   










0262.0

2483.0
2x  and 













147.108423.90

423.90158.1311
pooledS  

Now the linear discriminant function is 

 
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Moreover 

  88.0
0390.0

0065.0
92.2861.37ˆ

11 
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

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and the mid-point between these means is  

      61.4
2

1

2

1
ˆ 2121

1
21   yypooled xxSxxm  

Now to classify a women who may be a hemophilia 'A' carrier with 210.01 x  and 

044.02 x .  
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We calculate: 62.692.2861.37ˆ
2100  xxy xl . Since m̂0 y  we classify the 

women in 2  population, i.e., to obligatory carrier group. 

7. Factor Analysis 

The essential purpose of factor analysis is to describe, if possible, the covariance 
relationships among many variables in terms of a few underlying but unobservable 
random quantities called factors.  A frequent source of confusion in the field of factor 
analysis is the term factor.  It sometimes refers to a hypothetical, unobservable variable as 
in the phrase common factor.  In this sense, factor analysis must be distinguished from 
component analysis since a component is an observable linear combination.  Factor is 
also used in the sense of matrix factor, in that one matrix is a factor of second matrix if 
the first matrix multiplied by its transpose equals the second matrix.  In this sense, factor 
analysis refers to all methods of data analysis using matrix factors, including component 
analysis and common factor analysis.  A common factor is an unobservable hypothetical 
variable that contributes to that variance of at least two of the observed variables.  The 
unqualified term “ factor” often refers to a common factor.  A unique factor is an 
unobservable hypothetical variable that contributes to the variance of only one of the 
observed variables.  The model for common factor analysis posits one unique factor for 
each observed variable.  The PROC FACTOR can be used for several types of common 
factor and component analysis.  Both orthogonal and oblique rotations are available.  We 
can compute scoring coefficients by the regression method.  All major statistics computed 
by PROC FACTOR can also be saved in an output DATA SET.  The PROC FACTOR 
can be invoked by the following statements: 

PROC FACTOR <options>; 

VAR variables; 

PRIORS Communalities; 

PARTIAL Variables; 

FREQ Variable; 

WEIGHT Variable; 

BY  variables; 

RUN; 

Usually only the VAR statement is needed in addition to the PROC FACTOR statement. 
The some of the important options available with PROC FACTOR are: 

METHOD=NAME : specifies the method of extracting factors. The default option is 
METHOD = PRINCIPAL, which yields principal component analysis if no PRIORS is 
used or if PRIORS = ONE is specified; if a PRIORS = value other than one is specified, a 
principal factor anlaysis is performed. 

METHOD= PRINT : yields iterated principal factor analysis. 
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METHOD=ML : performs maximum- likelihood factor analysis. 

METHOD = ALPHA : produced alpha factor analysis. 

METHOD =ULS:  produced unweighted least squares factor analysis. 

NFACTORS=nNFACT=nN=n  specifies the maximum number of factors to be 
extracted. 

PRIORS =name: (ASMCINPUTMAXONERANDOMSMC) :  specifies a method 
for computing prior communality estimates 

ROTATE=name: gives the rotation method. The default is ROTATE=NONE. FACTOR 
performs the following orthogonal rotation methods: 

 EQUAMAX 

 ORTHOMAX 

 QUARTIMAX 

 PARSIMAX 

 VARIMAX 

After the initial factor extraction, the common factors are uncorrelated with each other. If 
the factors are rotated by an orthogonal transformation, the rotated factors are 
uncorrelated. If the factors are rotated by an oblique transformation, the rotated factors 
become correlated. Oblique rotations often produce more useful patterns than do 
orthogonal rotations. However, a consequence of correlated factors is that there is no 
single unambiguous measure of the importance of a factor in explaining a variable. Thus, 
for oblique rotations, the pattern matrix doesn’t provide all the necessary information for 
interpreting the factors. 

SPSS:  To Perform Factor Analysis. From the menus choose: Analyze  Data 
Reduction  Factor...  Select the variables for the factor analysis.  

To understand  the role of Factor Analysis, consider the following examples 

Example 7: What underlying attitudes lead people to respond to the questions on a 
political survey as they do? Examining the correlations among the survey items reveals 
that there is significant overlap among various subgroups of items--questions about taxes 
tend to correlate with each other, questions about military issues correlate with each 
other, and so on. With factor analysis, you can investigate the number of underlying 
factors and, in many cases, you can identify what the factors represent conceptually. 
Additionally, you can compute factor scores for each respondent, which can then be used 
in subsequent analyses. For example, you might build a logistic regression model to 
predict voting behavior based on factor scores. 

Example 8: A manufacturer of fabricating parts is interested in identifying the 
determinants of a successful salesperson. The manufacturer has on file the information 
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shown in the following table. He is wondering whether he could reduce these seven 
variables to two or three factors, for a meaningful appreciation of the problem. 

Data Matrix for Factor Analysis of seven variables (14 sales people) 

Sales 
Person 

Height
 1x  

Weight
 2x  

Education
 3x  

Age
 4x  

No. of 
Children

 5x  

Size of 
Household

 6x  

IQ
 7x  

1 67 155 12 27 0 2 102 
2 69 175 11 35 3 6 92 
3 71 170 14 32 1 3 111 
4 70 160 16 25 0 1 115 
5 72 180 12 30 2 4 108 
6 69 170 11 41 3 5 90 
7 74 195 13 36 1 2 114 
8 68 160 16 32 1 3 118 
9 70 175 12 45 4 6 121 
10 71 180 13 24 0 2 92 
11 66 145 10 39 2 4 100 
12 75 210 16 26 0 1 109 
13 70 160 12 31 0 3 102 
14 71 175 13 43 3 5 112 

Can we now collapse the seven variables into three factors? Intuition might suggest the 
presence of three primary factors: maturity revealed in age/children/size of household, 
physical size as shown by height and weight, and intelligence or training as revealed by 
education and IQ. 

The sales people data have been analyzed by the SAS program. This program accepts 
data in the original units, automatically transforming them into standard scores. The three 
factors derived from the sales people data by principal component analysis (SAS 
program) are presented below: 

Three-factor results with seven variables 

 
Variable 

Sales People Characteristics  
Communality Factor I Factor II Factor III 

Height 0.59038 0.72170 -0.30331 0.96140 (sumsq I,II and III) 
Weight 0.45256 0.75932 -0.44273 0.97738 
Education 0.80252 0.18513 0.42631 0.86006 
Age -0.86689 0.41116 0.18733 0.95564 
No. of Children -0.84930 0.49247 0.05883 0.96730 
Size of Household -0.92582 0.30007 -0.01953 0.94756 
IQ 0.28761 0.46696 0.80524 0.94918 
Sum of squares 3.61007 1.85136 1.15709  
Variance summarized 0.51572 0.26448 0.16530 Average=0.94550 

Factor Loadings 

The coefficients in the factor equations are called "factor loadings". They appear above in 
each factor column, corresponding to each variable. The equations are: 
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76543211 28761.092582.084930.086689.080252.045256.059038.0 xxxxxxx F

76543212 46696.030007.049247.041116.018513.075932.072170.0 xxxxxxx F

76543213 80524.001953.058830.018733.080252.044273.030331.0 xxxxxxx F

The factor loadings depict the relative importance of each variable with respect to a 
particular factor. In all the three equations, education  3x  and IQ  7x  have got positive 

loading factor indicating that they are variables of importance in determining the success 
of sales person. 

Variance summarized 

Factor analysis employs the criterion of maximum reduction of variance - variance found 
in the initial set of variables. Each factor contributes to reduction. In our example Factor I 
accounts for 51.6% of the total variance. Factor II for 26.4% and Factor III for 16.5%. 
Together the three factors "explain" almost 95% of the variance. 

Communality 

In the ideal solution the factors derived will explain 100% of the variance in each of the 
original variables, "Communality" measures the percentage of the variance in the original 
variables that is captured by the combinations of factors in the solution. Thus 
communality is computed for each of the original variables. Each variables communality 
might be thought of as showing the extent to which it is revealed by the system of factors. 
In our example the communality is over 85% for every variable. Thus the three factors 
seem to capture the underlying dimensions involved in these variables. 

There is yet another analysis called varimax rotation, after we get the initial results. This 
could be employed if needed by the analyst. We do not intend to dwell on this and those 
who want to go into this aspect can use SAS program for varimax rotation. 

8.  Cluster Analysis 

The basic aim of the cluster analysis is to find “natural” or “real” groupings, if any, of a 
set of individuals (or objects or points or units or whatever). This set of individuals may 
form a complete population or be a sample from a larger population. More formally, 
cluster analysis aims to allocate a set of individuals to a set of mutually exclusive, 
exhaustive groups such that individuals within a group are similar to one another while 
individuals in different groups are dissimilar. This set of groups is called partition or 
dissection. Cluster analysis can also be used for summarizing the data rather than finding 
natural or real groupings. Grouping or clustering is distinct from the classification 
methods in the sense that the classification pertains to a known number of groups, and the 
operational objective is to assign new observations to one of these groups. Cluster 
analysis is a more primitive technique in that no assumptions are made concerning the 
number of groups or the group structure. Grouping is done on the basis of similarities or 
distances (dissimilarities). Some of these distance criteria are:  

Euclidean distance: This is probably the most commonly chosen type of distance. It is 
the geometric distance in the multidimensional space and is computed as:  
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where yx, are the p-dimensional vectors of observations. 

Note that Euclidean (and squared Euclidean) distances are usually computed from raw 
data, and not from standardized data. This method has certain advantages (e.g., the 
distance between any two objects is not affected by the addition of new objects to the 
analysis, which may be outliers). However, the distances can be greatly affected by 
differences in scale among the dimensions from which the distances are computed. For 
example,  if one of the dimensions denotes a measured length in centimeters, and you 
then convert it to millimeters (by multiplying the values by 10), the resulting Euclidean or 
squared Euclidean distances (computed from multiple dimensions) can be greatly affected 
(i.e., biased by those dimensions which have a larger scale), and consequently, the results 
of cluster analyses may be very different. Generally, it is good practice to transform the 
dimensions so they have similar scales.  

Squared Euclidean distance: This measure is used in order to place progressively 
greater weight on objects that are further apart. This distance is square of the Euclidean 
distance. 

Statistical distance: The statistical distance between the two p-dimensional vectors 

yx and  is )()()( 1 yxsyxyx,  d , where s is the sample variance-covariance 

matrix.  

 

Many more distance measures are available in literature. For details, a reference may be 
made to Romesburg (1984). 

Several types of clusters are possible using various PROC statements: 

 Disjoint cluster place each object in one and only one cluster. (PROC FASTCLUS, 
PROC VARCLUS). 

 Hierarchical clusters are organised so that one cluster may be entirely contained 
within  another cluster, but no other kind of overlap between clusters is allowed. 
(PROC CLUSTER, PROC VARCLUS). 

 Overlapping clusters can be constrained to limit the number of objects that belongs 
simultaneously to two clusters. (PROC OVERCLUS) 

 Fuzzy clusters are defined by a probabilities or grade of membership of each object in 
each cluster. Fuzzy clusters can be disjoint, hierarchical or overlapping.  

SPSS: To Obtain a Hierarchical Cluster Analysis, from the menus choose: Analyze  
Classify   Hierarchical Cluster...  For clustering cases, select at least one numeric 
variable, For clustering variables, select at least three numeric variables  Optionally, 
one can select an identification variable to label cases. 



MULTIVARIATE ANALYSIS TECHNIQUES 

 5.26

References 

Johnson, R.A. and Wichern, D.W. (2002). Applied Multivariate Statistical Analysis. 5th 
Edition, Pearson Education Inc., New Delhi. 

Romesburg, H.C. (1984). Cluster Analysis for Researchers. Lifetime Learning 
Publications, California. 

Some E-learning Resources  

kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf 

www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf - 

en.wikipedia.org/wiki/Principal_components_analysis 

 



 

 

AGRICULTURAL STATISTICS SYSTEM IN INDIA 

Tauqueer Ahmad 

ICAR-Indian Agricultural Statistics Research Institute, New Delhi -110012 

 

1. Introduction 

India is primarily an agriculture-based country and its economy largely depends upon 
agriculture. Presently, contribution of agriculture about one third of the national GDP and 
provides employment to over seventy percent of Indian population in agriculture and 
allied activities. Therefore, our country’s development largely depends upon the 
development of agriculture. The agricultural production information is very important for 
planning and allocation of resources to different sectors of agriculture. Agricultural 
statistics in India have a long tradition. Artha Shastra of Kautilya makes a mention of 
their collection as a part of the administrative system. During the Moghul period also 
some basic agricultural statistics were collected to meet the needs of revenue 
administration. Ain-e-Akbari is most important document that throws great light on the 
manner in which statistics were collected during the moghul period. After the Moghul 
period British rule started Ryotwari System, introduced during 18th Century to collect 
land revenue. In 1866, the British Government initiated collection of agricultural statistics 
mainly as a by product of revenue administration and these reflected the then primary 
interest of the Government in the collection of land revenue.  Subsequently, the emphasis 
shifted to crop forecasts designed primarily to serve the British trade interests.  On a 
representation made by a leading firm of Liverpool, trading in wheat, the preparation of 
wheat forecast was taken up in 1884 and the land utilization statistics are available in the 
country since 1884. By 1900, oilseeds, rice, cotton, jute indigo and sugarcane had also 
been added to the list of forecast crops.   

The system of agricultural statistics generates valuable statistics on a vast number of 
parameters. Some of the very important statistics are land-use statistics and area under 
principal crops through the Timely Reporting Scheme (TRS) and also on complete 
enumeration basis, yield estimates through the General Crop Estimation Surveys (GCES), 
the scheme of Cost of Cultivation Studies (CCS), checks  the reliability of TRS and yield 
estimates through the scheme of Improvement of Crop Statistics (ICS) , cost of 
production estimates, agricultural wages, irrigation statistics, conduct of Agricultural 
Census and Livestock Census on quinquennial basis. The system of agricultural statistics 
also generates data on livestock products through the scheme of Integrated Sample 
Survey (ISS), collects wholesale and retail prices, conducts market intelligence and 
observes rainfall and weather conditions. 

 

2. Crop Area Statistics  

The country can be divided into four broad categories with respect to collection of area 
statistics   namely (i) Temporarily settled states, (ii) Permanently settled states and (iii) 
Other regions. 

  (i) Temporarily Settled States  

The system of temporarily settlements was introduced in our country in 1892, with a view 
to fix land revenue for a period, which was subject to change at the time of the next 
settlement. Ordinarily, the interval between two settlements was 25 to 30 years. In order 
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to determine the land revenue and to make estimates of production forecast detail 
statistics are to be collected about land revenue, land value etc. In temporarily settled 
areas the information on crop area statistics are collected by the village accountant or 
Patwari and are recorded in a register which is popularly known in northern India as 
Khasra. The village accountant has been called by different names in different parts of the 
country such as Karnam in South, Telatti in Maharashtra, Karamchari in Bihar, lekhpal in 
Uttar Pradesh etc. This category covers around 86% of total reported area of the country.   

The crop area statistics collected by village accountant are on the basis of complete 
enumeration called girdawari. The village accountant is to visit each and every field of 
the village in each crop season and record the information such as area under different 
crops/land use categories and its status in standard forms called Khasra register. The work 
of village accountant is supervised by immediate superior officer known by the name of 
Quanungo in northern India. Most of the geographical areas of temporarily settled states 
are cadastrally surveyed and detailed maps are available in tehsil and district 
Headquarters. The statistics obtained by different village accountants are aggregated to 
get the crop area statistics at higher administrative units such as blocks, tehsils, district, 
states etc. This system of data collection is being followed in 18 states namely Andhra 
Pradesh, Assam (excluding hill districts), Bihar, Chattisgarh, Goa, Gujarat, Haryana, 
Himachal Pradesh, Jammu & Kashmir, Jharkhand, Karnataka, Madhya Pradesh, 
Maharashtra, Punjab, Rajasthan, Tamil Nadu, Uttaranchal and Uttar Pradesh and 5 union 
territories Chandigarh, Dadra and Nagar Haveli, Daman & Due, Delhi and Puduchery. 

(ii) Permanently Settled States  

There are three states namely Kerala, Orissa and West Bengal which come under category 
of permanently settled states. In case of these states land revenue was permanently fixed 
and question of revision ordinarily did not arise. In these states there is no system of 
recording details of area statistics as there is no permanent revenue staff for a village like 
village accountant as in the case of temporarily settled area. Initially there was no uniform 
system of collecting area statistics in these regions. The police Chaukidar or village 
headman was usually providing the statistics on the basis of guess work which were quite 
unreliable. In order to improve the quality of these statistics in the permanently settled 
states, presently, the area statistics in these states are collected by specially appointed 
field staff under the scheme known as “Establishment of Agency for Reporting 
Agricultural Statistics (EARAS)” which was initiated in 1968-69. In the States covered 
by EARAS, the complete enumeration of all fields (survey numbers) i.e. girdawari is 
conducted every year in a random sample of 20% villages of the States, which are 
selected in such a way that during a period of 5 years, the entire state is covered. This 
category covers around 9% of total reported area of the country.  

(iii) Other Regions  

The remaining eight states in North Eastern regions namely Arunachal Pradesh, Manipur, 
Meghalaya, Mizoram, Nagaland, Sikkim and Tripura and two other union territories 
namely Andaman and Nicobar Islands and Lakshadweep do not have a proper reporting 
system, though states of Tripura and Sikkim (except some minor pockets) are cadastrally  
surveyed.  In these regions, compilation of area statistics is based on conventional 
methods in which estimates are reported by village choukidars on the basis of personal 
assessment. This category covers around 5% of total reported area of the country. 
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3. Timely Reporting Scheme (TRS) 

In order to reduce the time-lag between the sowing and availability of estimates of area 
and harvesting of crops and availability of estimates of production, a Centrally sponsored 
scheme for Timely Reporting of Estimates of Area and Production of Principal Crops 
(TRS), was initiated by the Ministry of Agriculture and Irrigation in the year 1968-70. 
The basic objective of TRS is to reduce time lag for making available area statistics of 
major crops in addition to providing the sample frame of selection of crop growing fields 
for crop cutting experiments in permanently settled states. Under the scheme, the villages 
in each stratum (tehsil/revenue inspector circle/patwari circle etc.) are divided into 5 
independent non-overlapping sets, each comprising one fifth of the total number of 
villages. One set of randomly selected village is chosen for crop inspection on priority 
basis immediately after the sowing in each season are completed, but in advance of the 
period prescribed in the land records manuals for such crop inspection. The village crop 
area statements are submitted to higher authorities in stipulated date to estimate crop area 
statistics in advance for major crops. These estimates are further used for crop forecasting 
purposes. The sampled villages under TRS are selected from temporary area in such a 
way that the entire temporarily settled parts of the country are covered over a period of 
five years.  

The TRS provides for recording the area under irrigation as well as area under high 
yielding varieties in the selected villages. Besides ensuring accuracy and timeliness of the 
enumeration of the area under crops, statistical staff under the scheme is required to 
inspect the fieldwork of crop cutting experiments and ensure timely dispatch of the 
returns. This scheme has been taken up in a phased manner in different States beginning 
with Uttar Pradesh and Maharashtra. 

 

4. Establishment of an Agency for Reporting of Agricultural Statistics Scheme 
(EARAS) 

In the states of Kerala, Orissa and West Bengal a scheme similar to TRS was introduced 
with same objectives of obtaining area estimates based on 20% sample for use of both by 
Center and States. Here also, it was envisaged that complete enumeration of fields for 
area figures would be available for all villages over a period of five years as in case of 
TRS. 

 

5. System of Data Collection for Area Estimation 

In the states where land record are maintained (temporary settled) the village accountant 
is in-charge of a village or a group of villages for carrying out field to field crop 
inspection in each crop season for an agricultural year to record the crop area and land 
utilization statistics. He is supposed to record the crop details related to area and land 
utilization in Khasra register.  After the completion of entries for each survey number of 
the village, an abstract of area sown under different crops “Jinswar statement” is prepared 
and sent to next higher official in the revenue hierarchy. At the end of each agricultural 
year a land utilization area statistics are compiled and abstract is sent to related higher 
official. The crop wise and land utilization wise area statistics obtained from different 
villages are aggregated at the revenue circle, tehsil and district levels. The district wise 
area statistics are sent to State Agricultural Statistics Authority (SASA), which is 
generally Director of Statistical Bureau or the Director of Agriculture or the Director of 
Land Records. The state level aggregation is done by SASA and forwarded to Directorate 
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of Economics and Statistics (DES), Ministry of Agriculture & Cooperation, Govt. of 
India, which is the nodal agency for releasing the state level and the all India level 
estimates. 

In order to improve the timeliness and quality of Agricultural Statistics, Ministry of 
Agriculture and Cooperation, Govt. of India introduced TRS and EARAS. Area 
enumeration under TRS has to be completed on priority basis in a random sample of 20% 
of the villages during each crop season in a state. EARAS was introduced as a sequel to 
TRS in the non-land record states namely Kerala, Orissa and West Bengal. This scheme 
provides for setting up whole time agency to cover 20% of villages every year so that all 
the villages of a state are covered in 5 years. In the sample villages under this scheme, the 
crop area is to be reported on the basis of complete enumeration. 

 

6. System of Data Collection for Yield Estimation 

The sampling design generally adopted for the Crop Estimation Surveys is one of 
Stratified Multi-Stage Random Sampling with tehsils/taluks/revenue inspector 
circles/blocks/anchals, etc. as strata and revenue village within a stratum as first stage unit 
of sampling, survey number/field within each selected village as sampling unit at the 
second stage and experimental plot of a specified shape and size as the ultimate unit of 
sampling. In each selected primary unit generally two survey numbers/fields growing the 
experimental crop are selected for conducting crop-cutting experiments. However, in 
Dadra and Nagar Haveli three fields are selected instead of two.  

Generally, 80-120 experiments are conducted for a crop in a major district where a 
district is considered as major for a given crop if the area under the crop in the district 
exceeds 80,000 hectares or lies between 40,000 and 80,000 hectares but exceeds the 
average area per district in the State. Otherwise, district is considered a minor for a given 
crop. Experiments in minor districts are so adjusted that the precision of the estimates is 
fairly high and the workload on the field staff is manageable. On an average, about 44 or 
46 experiments are planned in a minor district. The number of experiments allotted to a 
district is distributed among the strata within the district roughly in proportion to the area 
under the crop in the stratum. Generally, the crop cutting is done in a plot of size 5m x 5m 
size for most of the crops in most of the states.  However, in UP the shape of the plot is of 
an equilateral triangle of size 10 meters and in West Bengal a circular plot of radius 1.745 
meters is taken for crop cut. 

The average yield is obtained after harvesting, threshing, weighing and recording the 
weight of the produce from the selected plots. In a sub-sample of experiments further 
processing of the harvested produce is done to determine the percentage recovery of dried 
grains or the marketable grain of the produce depending on the nature of the crop. 

In the case of three non-land record states i.e. Kerala, Orissa and West Bengal both area 
and yield are estimated on the basis of sample surveys. The crop cutting experiments are 
planned in a sub-sample of the primary units selected for the purpose of area 
enumeration. The general procedure of selecting sampling units remains same at different 
stages as in that of other states. However, some special features of these states need to be 
mentioned specifically.  

In Kerala block/city corporation or municipalities with an area of 10 sq. km. and above 
are treated as separate stratum. Municipalities with an area of less than sq. km. are 
merged with adjoining blocks and treated as a single stratum. These blocks are divided 
into a number of Investigator Zones depending on the area of a block, nature of land, etc.  
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City Corporation area is divided into three Investigator Zones. Each municipality with an 
area more than 10 sq. km. is treated as a single Investigator Zone. The number of crop 
cutting experiments conducted in each Investigator Zone is six per season for paddy, three 
each for Coconut and Banana and two each for Tapioca, Arecanut, Cashewnut, Pepper, 
Plantain and Jackfruit in an agricultural year. In a municipal area having separate 
Investigator Zone, 10 crop cutting experiments are conducted in respect of paddy per 
season and 5 for coconut per year. For City Corporation areas, six experiments for paddy 
per season and five for coconut per year in one Investigator Zone are conducted.  

 

7. System for Crop Forecasting  

The advance estimates of crop area and production are released with respect to principal 
food and non-food crops (food grain, oilseeds, sugarcane, fibres etc.), which covers 
nearly 87% of agricultural output. Four forecasts are issued, first in middle of September, 
the second in January, the third towards the end of March and fourth by the end of May. 

The advance estimates released in September are related to Kharif crops, which is mostly 
based on reports submitted by states based on visual observation of the field officials. The 
second forecast which covers both Kharif and Rabi and released in January by taking into 
account additional information obtained from various sources including agricultural 
inputs, incidence of pests and diseases, weekly reports from state government regarding 
area coverage, conditions of standing crops etc. Presently estimates obtained through 
Remote Sensing are also considered at this stage. The third forecast, which is made in 
March, the estimates of Kharif and Rabi seasons are revised based on information 
received from sources such as Market Intelligence Units, Meteorological Department and 
the Crop Weather Watch Group (CWWG). The forecast made by the end of May is based 
on actual figures supplied by State Agricultural Statistics Authorities (SASAs) using yield 
estimates obtained through GCES. In addition to these four forecasts, the DES, MOA 
provides final estimates in December. The fully revised estimates are obtained in the next 
crop year in the following December in which all delayed information are incorporated 
and all India crop statistics are released. 

The Mahalanobis National Crop Forecasting Centre (MNCFC) was setup by Ministry of 
Agriculture with the objective of examining existing mechanism of making forecasts and 
developing more objective technique. However, the MNCFC need to strengthen the crop 
forecasting system of the country by incorporating more objective techniques and models 
based on sound statistical techniques. 

 

8. Co-ordination of Data Collection 

The Field Operation Division of NSSO has the overall responsibility of assisting the 
States in developing suitable techniques for obtaining reliable and timely estimates, 
providing technical guidance and ensuring adoption of uniform concepts, definitions and 
procedures in the Crop Estimation Survey (CES) in the States. It reviews the design, plan, 
details of implementation and the results of the surveys and, associates itself in the 
conduct of training camps organized for the States field staff and participates in the 
primary field work of exercising technical supervision. 
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9. Supervision of Data Collection 

Supervision of fieldwork is an essential part of any large-scale sample survey for ensuring 
quality of data collected. A three-fold approach is adopted in the States for supervision of 
crop cutting experiments planned under Crop Estimation Surveys. This includes: 

a. Supervision by the statistical staff of State Agricultural Statistics Authorities 
(SASAs), 

b. Supervision by the Departmental staff i.e. by the supervisory officers of the 
Departments whose workers are responsible for the conduct of crop cutting 
experiments in the field and  

c. Supervision by the Technical personnel of the FOD of National Sample Survey 
Office. 

In the States of Goa, Orissa, West Bengal and the UT of Pondicherry where the field 
work was conducted only by the staff of Statistics Department, the supervision was done 
by the Statistical staff only whereas in the case of Bihar, Himachal Pradesh, Union 
Territories of Dadra & Nagar Haveli and Daman & Diu, though there are other primary 
field agencies, the supervision was done by the State statistical staff only. Though 
supervision of the conduct of Crop Cutting Experiments in various states was in vogue 
since inception of Agricultural Statistical Wing from the year 1973-74 (Rabi) onwards, 
NSSO personnel are participating in the supervision by conducting sample check on crop 
cutting experiments in the post-harvest stages in a pre-assigned sample under the Scheme 
for Improvement of Crop Statistics (ICS) in 20 states and 2 Union Territories. Under this 
Scheme, State statistical staff also undertakes similar sample checks on a matching basis. 

 

10. Applications of Remote Sensing and GIS Technology 

In India, Indian Council of Agricultural Research (ICAR) and Indian Space Research 
Organization (ISRO) jointly conducted the first multi-spectral air born study for 
identification of root-wilt disease in coconut in 1969.  

The country level studies related to applications of remote sensing technologies were 
initiated after launch of IRS-IA satellite. Crop Acreage and Production Estimation 
(CAPE) was one of the important projects in this direction for estimation of crop area 
under wheat, rice, cotton, ground nut, sorghum & mustered. Apart from these national 
level projects, numbers of small studies have been carried out to develop methodologies 
for application of satellite   data in various fields of agricultural and rural development by 
Department of Space. Some of these studies are by Dadhwal et al. (1985, 1991), etc. 
Several methodological studies related to estimation of crop area and production have 
been carried out at Indian Agricultural Statistics Research Institute (IASRI), New Delhi. 
Singh et al. (1992) used satellite data for stratification of crop area for the general crop 
estimation surveys and obtained more precise estimator of crop yield. Singh et al. (1999) 
also developed small area estimator of crop yield. Singh et al. (2002) used satellite data 
and the farmers eye estimate for developing a reliable crop yield model. Application of 
remote sensing and GIS technology for estimation of land use statistics using spatial 
models has been explored by Rai et al. (2004). Now, a project   entitled “Forecasting 
Agricultural Output Using Space, Agro-metrology and Land-based Observations” 
(FASAL) is undertaken under National Crop Forecasting Center (NCFC) of Ministry of 
Agriculture, to meet the requirements of timely nation wide and multi- crop reliable fore 
cast. A project has also been taken up jointly by IASRI, New Delhi, Space Application 
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Center (SAC), Ahmedabad and North-Eastern Space Application Centre (NESAC), 
Shillong with the support of Directorate of Economic and Statistic of Meghalaya State to 
explore the possibility of estimation of area and production of field crops by integration 
of remote sensing technology, GIS and field survey. The result of all these studies are 
very encouraging and indicates that in future remote sensing and GIS has a great potential 
tool to improve the quality of area and production statistics of the country. 

 

11. Improvement of Crop Statistics (ICS)  

In addition to the crop area estimates developed by the state government the National 
Sample Survey (NSS) use to develop area estimates based on sample surveys during its 
regular rounds of surveys.  Estimates were obtained for the whole country and also for 
certain population zones. There used to be significant differences between two series of 
data on crop area statistics. In order to probe into these high differences a technical 
committee on crop statistics was set up in 1963. The committee favored inter alia the 
estimates based on complete enumeration. As a consequence, the NSS discontinued its 
land utilization surveys and also crop cutting experiments in 1970-71 under household 
surveys. Thereafter, the NSSO introduced the ICS scheme in 1973-74 with an objective 
of improving the quality of statistics through joint efforts of centre and state authorities.  
Currently the scheme is in operation in 20 states and two Union Territories of Delhi and 
Pondicherry. In this scheme an independent agency (NSSO) carries out the supervision 
and physical verification of girdawari in a sub-sample of four clusters of five survey 
numbers in each of the TRS sample villages. An assessment is made for extent of 
discrepancies between the entries of supervisor and girdawari completed by village 
accountant for each of the selected survey numbers in the sample. The supervisors for 
checking possible errors of aggregations also scrutinize the crop abstract of the village, 
which is prepared by patwaries. The permanently settled states are also covered under this 
scheme where a sub-sample of EARAS sample villages (survey number) is scrutinized 
following the same methodology as adopted for temporarily settled area. Generally, a 
total of 10,000 sample villages are covered by the ICS out of which 8,500 are in the 
temporarily settled states and 1,500 in the permanently settled states. 

National Sample Survey Office (NSSO) is mainly responsible for planning and operations 
of ICS by employing full time field staff for supervision. The responsibility of field 
supervision is shared by designated state agencies which are responsible for carrying out 
the field supervision in approximately half of the sampled villages. 

Major Issues Emerging from the ICS Scheme 

1. The crop statements submitted by patwari are many times based on incomplete 
girdawaries. 

2. The village crop statements are not submitted in time and there are large 
percentages of non-response. 

3. The entries in the girdawaries are not correct at least for one third of survey 
numbers. 

4. Recording area under mixed crop is a major source of errors as it is not uniform 
across the states. 

5. Sometimes there is uncertainty of recording area under crop as area sown or area 
harvested. This leads to inaccurate estimation of area, if area sown is recorded as 
area under crop and there is no germination as expected. 
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6. Area sown more than once is also responsible for some confusion about statistics 
of area under various crops. 

7. Inclusion of field ridges, bunds in measurements also result in accuracy, which 
may be higher in some of the cases. 

8. Due to introduction of new technology/varieties number of short duration crops are 
grown and also, there is shift in cropping pattern towards value added crops which 
are not reflected properly in girdawari.  

9. It has been observed that field staff approved by the State Government do not 
strictly adhere to the prescribed procedures and thereby the survey estimates are 
subject to a variety of non-sampling errors. 

10. The errors are introduced mainly due to wrong selection of fields and duration of 
selected experimental plots. The use of defective instruments such as proper 
weighing machine introduces considerable amount of measurement errors. 

11. The state departments of revenue and agriculture, which are responsible for 
carrying out the survey, keeps these programmes on low priority and there is 
inadequate higher level of supervision and control of field operations.  The “High 
Level Coordination Committee (HLCC) on Agricultural Statistics” in the states 
has little impact in improving the quality of data. 

12. In order to meet the requirements of getting estimates at block/village panchayat 
levels especially for crop insurance purposes some of the State increased the 
number of crop cutting experiments considerably. This imposes an enormous 
burden on the field agency, increases considerably the non-sampling errors, which 
results in further deterioration of quality of data collected through GCES.  There is 
possibility of under estimation of yield rates in case of crop insurance due to local 
pressure from insured farmers where interest lies in depressing the crop yield. 

13. It has been a matter of great debate in the past as production statistics obtained by 
different sources/agencies are quite different. The problem is especially significant 
in case of cash crops like cotton, oilseeds etc. 

14. Inadequate training is provided to the field staff for conducting the crop cutting 
experiments. 

15. Another important factor, which has bearing on the quality of production data is, 
the late time schedule fixed for certain crops in Kharif season in some states.  In 
this case crop-cutting experiments are to be conducted before completion of the 
season due to early harvesting.  Such situations have been arising in respect of 
Kharif crops like maize, jowar, bajra, groundnut, cotton, soybean etc. in States like 
Gujarat, Haryana, Karnataka and M.P. Due to early harvesting of these crops, area 
under crop is generally under reported and hence production too. 

16. There is strong need to develop suitable forecasting models which integrate 
information from different sources on parameters related to crop production such 
as crop conditions, agro meteorology, water availability etc. 

17. No multi-dimensional models exists in which the information generated from 
different sources can be integrated. 

18. The flows of information from different generating agencies are not time bound 
and appropriate. 



 
AGRICULTURAL STATISTICS SYSTEM IN INDIA 

6.9 
 

19. The DES, MOA is loosing confidence of users group due to frequent changes in 
production figures specially most of the time differences in the forecasted 
estimates are huge. These differences create lot of confusion and doubt among 
users 

20. The present technique is mostly subjective and is not based on sound statistical 
technique. 
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1. Introduction 
The need to gather information arises in almost every conceivable sphere of human 
activity. Many of the questions that are subject to common conservation and controversy 
require numerical data for their resolution. The data collected and analyzed in an 
objective manner and presented suitably serve as a basis for taking policy decisions in 
different fields of daily life. 
The important users of statistical data, among others, include government, industry, 
business, research institutions, public organizations and international agencies and 
organizations. To discharge its various responsibilities, the government needs variety of 
information regarding different sectors of economy, trade, industrial production, health 
and mortality, population, livestock, agriculture, forestry, environment and available 
resources. The inferences drawn from the data help in determining future needs of the 
nation and also in tackling social and economic problems of people. For instance, the 
information on cost of living for different categories of people, living in various parts of 
the country is of importance in shaping its policies in respect of wages and price levels. 
Data on agricultural production are of immense use to the state for planning to feed the 
nation. In case of industry and business, the information is to be collected on labour, cost 
and quality of production, stock and demand and supply positions for proper planning of 
production levels and sales campaigns. 
The purpose of a statistical survey is to obtain information about populations. By 
‘population’ we mean, a group of units defined according to the objective(s) of a survey. 
Thus, the population may comprise of all the fields under a specified crop as in area and 
yield surveys, or all the agricultural holdings above a specified size as in agricultural 
surveys. Of course, the population may also refer to persons either of the whole 
population of a country or a particular sector thereof. The information that we seek about 
the population is normally the total number of units, aggregate values of the various 
characteristics, averages of these characteristics per unit, proportions of units possessing 
specified attributes, etc. 

2. Complete enumeration 
One way of obtaining the required information at regional and country level is to collect 
the data for each and every unit (person, household, field, factory, shop etc. as the case 
may be) belonging to the population which is the aggregate of all units of a given type 
under consideration and this procedure of obtaining information is termed as complete 
enumeration. The effort, money and time required for the carrying out complete 
enumeration to obtain the different types of data will, generally, be extremely large. 
However, if the information is required for each and every unit in the domain of study, a 
complete enumeration is clearly necessary. Examples of such situations are preparation of 
“voter list” for election purposes and recruitment of personnel in an establishment, etc. 
But there are many situations, where only summary figures are required for the domain of 
study as a whole or for group of units. 
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3. Need for sampling  
An effective alternative to a complete enumeration can be sample survey where only 
some of the units selected in a suitable manner from the population are surveyed and an 
inference is drawn about the population on the basis of observations made on the selected 
units.   It can be easily seen that compared to sample survey, a complete enumeration is 
time-consuming, expensive, has less scope in the sense of restricted subject coverage and 
is subject to greater coverage, observational and tabulation errors. In certain 
investigations, it may be essential to use specialized equipment or highly trained field 
staff for data collection making it almost impossible to carry out such investigations. It is 
of interest to note that if a sample survey is carried out according to certain specified 
statistical principles, it is possible not only to estimate the value of the characteristic of 
the population as a whole on the basis of the sample data, but also to get a valid estimate 
of the sampling error of the estimate. There are various steps involved in the planning and 
execution of the sample survey. One of the principal steps in a sample survey relates to 
methods of data collection. 

4. Types of data 
The collection of required information depends on the nature, object, and scope of study 
on the one hand and availability of financial resources, time, and man power on the other. 
The statistical data are of two types: (i) primary data, and (ii) secondary data. The data 
collected by the Investigator from the original source are called primary data. If the 
required data had already been collected by some agencies or individuals and are now 
available in the published or unpublished records, these are known as secondary data. 
Thus, the primary data when used by some other Investigator/Agency become secondary 
data. There could be large number of publications presenting secondary data. Some of the 
important ones are given below: 

• Official publications of the Federal, State, and Local Governments. 

• Reports of Committees and Commissions. 

• Publications and reports of business organizations, trade associations, and 
chambers of commerce. 

• Data released by magazines, journals, and newspapers. 

• Publications of different international organizations like United Nations 
Organization, World Bank, International Monetary Fund, United Nations 
Conference on Trade and Development, International Labor Organization, Food 
and Agricultural Organization, etc. 

Caution must be exercised in using secondary data as they may contain errors of 
transcription from the primary source. 
 

5. Need for a sample 
Collection of information on every unit in the population for the characteristics of interest 
is known as complete enumeration or census. The money and time required for carrying 
out a census will generally be large, and there are many situations where with limited 
means complete enumeration is not possible. There are also instances where it is not 
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feasible to enumerate all units due to their perishable nature. In all such cases, the 
Investigator has no alternative except resorting to a sample survey. 
The number of units (not necessarily distinct) included in the sample is known as the 
sample size and is usually denoted by ‘n’, whereas the number of units in the population 
is called population size and is denoted by ‘N’. The ratio n/N is termed as sampling 
fraction. 
There are certain advantages of a sample survey over complete enumeration, which are as 
follows: 

a) Greater Speed 
The time taken for collecting and analyzing the data for a sample is much less than that 
for a complete enumeration. Often, we come across situations where the information is to 
be collected within a specified period. In such cases, where time available is short or the 
population is large, sampling is the only alternative. 

b) Greater Accuracy 
A census usually involves a huge and unwieldy organization and, therefore, many types 
of errors may creep in. Sometimes, it may not be possible to control these errors 
adequately. In sample surveys, the volume of work is considerably reduced. On account 
of this, the services of better trained and efficient staff can be obtained without much 
difficulty. This will help in producing more accurate results than those for complete 
enumeration. 

c) Greater scope 
There can be investigations where highly trained investigators or sophisticated equipment 
are needed. In the event of limited availability of trained investigators and sophisticated 
equipment, the census investigation may become difficult to carry out. Furthermore, since 
data are obtained by observing limited number of items, their detailed investigation, if 
necessary, is also possible. Thus, the investigations that are based on samples have more 
scope. 

d) Reduced Cost 
Because of lesser number of units in the sample in comparison to the population, 
considerable time, money, and energy are saved in observing the sample units in relation 
to the situation where all units in the population are to be covered. 

e) More detailed Information 
As the number of units in a sample are much less than those in census, detailed 
information, therefore, can be obtained on more number of variables. However, in 
complete enumeration, such an effort becomes comparatively difficult. 
From the above, it may be seen that the sample survey is more economical, provides more 
accurate information, and has greater scope in subject coverage as compared to a 
complete enumeration. It may, however, be pointed out here that sampling errors are 
present in the results of the sample surveys. This is due to the fact that only a part of the 
whole population is surveyed. On the other hand, non-sampling errors are likely to be 
more in case of a census study than these are in a sample survey. 
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6. Methods of data collection 
The different methods of data collection are: 

i. Physical observation or measurement 
ii. Personal interview 
iii. Mail enquiry 
iv. Telephonic enquiry 
v. Web-based enquiry 
vi. Method of Registration 
vii. Transcription from records 

The first six methods relate to the collection of primary data from the units/ respondents 
directly, while the last one relates to the extraction of secondary data, collected earlier 
generally by one or more of the first six methods. These methods have their respective 
merits and therefore sufficient thought should be given in selection of an appropriate 
method(s) of data collection in any survey. The choice of the method of data collection 
should be arrived at after careful consideration of accuracy, practicability and cost from 
among the alternative methods. 

i. Physical observations or measurement 
Data collection by physical observation or measurement consists in physically examining 
the units/respondents and recording data as a result of personal judgment or using a 
measuring instrument by the investigator. For instance, in a crop cutting experiment for 
estimating the yield of a crop, the plot is demarcated, the crop in the selected plot is 
harvested and the produce is weighted to estimate the produce per unit area. Data 
obtained by this method are likely to be more accurate, but may often prove expensive. 

ii. Personal interview 
The method of personal interview consists in contacting the respondents and collecting 
statistical data by questioning. In this case, the investigator can clearly explain to the 
respondents the objectives of the survey and the exact nature of the data requirements and 
persuade them to give the required information, thus reducing the possibility of non-
response arising from non-cooperation, indifference etc. Further, this method is most 
suitable for collecting data on conceptually difficult items from respondents. However, 
this method depends heavily on the availability of well trained interviewer. 

iii. Mail enquiry 
In a mail enquiry, data are collected by obtaining questionnaires filled in by the 
respondents, the questionnaires being sent and collected back through an agency such as 
the postal department. This method is likely to cost much less as compared to the above 
methods. However, the response may not always be satisfactory depending upon the 
cooperation of the respondents, the type of questionnaire and the design of the 
questionnaire. In developing countries where a large proportion of the population is 
illiterate, the method of mailed questionnaire may not even be feasible. 
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iv. Telephonic enquiry 
In telephonic enquiry, data are collected by questioning the respondents. This method 
provides an opportunity of two-way communication and thus can reduce the possibility of 
item non-response. However, this method can be used only for those surveys in which all 
units of target populations have telephone otherwise it will cause bias in the results. 

v. Web-based enquiry 
The increasing popularity and wide availability of World Wide Web technologies provide 
a new mode of data collection. In web-based enquiry, data are collected by obtaining 
questionnaires filled in by the respondents, the questionnaires being posted on the net. 
One important advantage of using computer technology in data collection is to minimize 
the loss of data owing to incomplete or incorrectly completed data sets by using Client 
side validation. In an era of information superhighway, this method is one of the fastest 
means of data collection. However, in developing countries where a large proportion of 
the population does not have access to Internet, the method of web-based enquiry may not 
serve the purpose for most of the surveys. Various Internet sites are using this method for 
opinion poll on certain issues. 

vi. Method of registration  
In the registration method, the respondents are required to register the required 
information at specified place. The vital statistics registration system followed in many 
countries provides an illustration of the registration method. The main difficulty with this 
method, as in the case of the mail enquiry, is the possibility of non-response due to 
indifference, reluctance, etc. on the part of informants to visit the place of registration and 
supply the required data. 

vii. Transcription from records 
The method of transcription from records is used when the data needed for a specific 
purpose are already available in registers maintained in one or more places, making it no 
more necessary to collect them directly from the original units at much cost and effort. 
The method consists in compiling the required information from the registers for the 
concerned units. This method is extensively used since a good deal of government and 
business statistics are collected as by-product of routine administrative operations. 
 

7. Various concepts and definitions 
i. Element:  

An element is a unit about which we require information. For example, a field growing a 
particular crop is an element for collecting information on the yield of a crop. 

ii. Population  
The collection of all units of a specified type in a given region at a particular point or 
period of time is termed as a population or universe. Thus, we may consider a population 
of persons, families, farms, cattle in a region or a population of trees or birds in a forest or 
a population of fish in a tank etc. depending on the nature of data required. 

iii. Sampling unit  
Elementary units or group of such units which besides being clearly defined, identifiable 
and observable, are convenient for the purpose of sampling are called sampling units. For 
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instance, in a family budget enquiry, usually a family is considered as the sampling unit 
since it is found to be convenient for sampling and for ascertaining the required 
information. In a crop survey, a farm or a group of farms owned or operated by a 
household may be considered as the sampling unit. 

iv. Sampling frame  
A list of all the sampling units belonging to the population to be studied with their 
identification particulars or a map showing the boundaries of the sampling units is known 
as sampling frame. Examples of a frame are a list of farms and a list of suitable area 
segments like villages in India or counties in the United States. The frame should be up to 
date and free from errors of omission and duplication of sampling units.  

v. Random sample  
One or more sampling units selected from a population according to some specified 
procedures are said to constitute a sample. The sample will be considered as random or 
probability sample, if its selection is governed by ascertainable laws of chance. In other 
words, a random or probability sample is a sample drawn in such a manner that each unit 
in the population has a predetermined probability of selection. For example, if a 
population consists of the N sampling units U1,U2,…,Ui,…,UN then, we may select a 
sample of n units by selecting them unit by unit with equal probability for every unit at 
each draw with or without replacing the sampling units selected in the previous draws. 

vi. Non-random sample  
A sample selected by a non-random process is termed as non-random sample. A non-
random sample, which is drawn using certain amount of judgment with a view to get a 
representative sample, is termed as judgment or purposive sample. In purposive sampling 
units are selected by considering the available auxiliary information more or less 
subjectively with a view to ensuring a reflection of the population in the sample. This 
type of sampling is seldom used in large-scale surveys mainly because it is not generally 
possible to get strictly valid estimates of the population parameters under consideration 
and of their sampling errors due to the risk of bias in subjective selection and the lack of 
information on the probabilities of selection of the units. 

vii. Population parameters  
Suppose a finite population consists of the N units U1,U2,…,UN and let Yi be the value of 
the variable y, the characteristic under study, for the ith unit Ui, (i=1,2,…,N). For instance, 
the unit may be a farm and the characteristic under study may be the area under a 
particular crop. Any function of the values of all the population units (or of all the 
observations constituting a population) is known as a population parameter or simply a 
parameter. Some of the important parameters usually required to be estimated in surveys 

are population total 
N

i
i 1

Y Y
=

=∑  and population mean 
N

i
i 1

Y Y / N
=

=∑ .  

viii. Statistic, estimator and estimate 
Suppose, a sample of n units is selected from a population of N units, according to some 
probability scheme and let, the sample observations be denoted by y1, y2,…, yn. Any 
function of these values which is free from unknown population parameters is called a 
statistic. 
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An estimator is a statistic obtained by a specified procedure for estimating a population 
parameter. The estimator is a random variable and its value differs from sample to sample 
and the samples are selected with specified probabilities. The particular value, which the 
estimator takes for a given sample, is known as an estimate. 

ix. Sampling and non-sampling error 
The error arises due to drawing inferences about the population on the basis of 
observations on a part (sample) of it, is termed sampling error. The sampling error is non-
existent in a complete enumeration survey since the whole population is surveyed. 
The errors other than sampling errors such as those arising through non-response, in- 
completeness and inaccuracy of response are termed non-sampling errors and are likely to 
be more wide-spread and important in a complete enumeration survey than in a sample 
survey. Non-sampling errors arise due to various causes right from the beginning stage 
when the survey is planned and designed to the final stage when the data are processed 
and analyzed.The sampling error usually decreases with increase in sample size (number 
of units selected in the sample) while the non-sampling error is likely to increase with 
increase in sample size. 
As regards the non-sampling error, it is likely to be more in the case of a complete 
enumeration survey than in the case of a sample survey since it is possible to reduce the 
non-sampling error to a great extent by using better organization and suitably trained 
personnel at the field and tabulation stages in the latter than in the former. 

8. Simple Random Sampling 
Simple random sampling (SRS) can be regarded as the basic form of probability sampling 
applicable to situations where there is no previous information available on the population 
structure. 
Simple random sampling is a method of selecting n units out of the N such that every one 

of the 







n
N

 distinct samples has an equal chance of being drawn. In practice a simple 

random sample is drawn unit by unit. The units in the population are numbered from 1 to 
N. A series of random numbers between 1 and N is then drawn, either by means of a table 
of random numbers or by means of a computer program that produces such a table. At 
any draw the process used must give an equal chance of selection to any number in the 
population not already drawn. The units that bear these numbers constitute the sample. 
Since a number that has been drawn is removed from the population for all subsequent 
draws, this method is also called random sampling without replacement. In case of a 
random sampling with replacement, at any draw all N members of the population are 
given an equal chance of being drawn, no matter how often they have already been 
drawn. The with-replacement assumption simplifies the estimation under complex 
sampling designs and is often adopted, although in practice sampling is usually carried 
out under a without replacement type scheme. Obviously, the difference between with 
replacement and without replacement sampling becomes less important when the 
population size is large and the sample size is noticeably smaller than it. 

8.1 Procedure of selecting a random sample 
Since probability sampling theory is based on the assumption of random sampling, the 
technique of random sampling is of basic significance. Some of the procedures used for 
selecting a random sample are as follows: 
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i) Lottery method 
ii) Use of random number tables 

i) Lottery Method:  
Each unit in the population may be associated with a chit/ticket such that each sampling 
unit has its identification mark from 1 to N. All the chits/tickets are placed in a container, 
drum or metallic spherical device, in which a thorough mixing is possible before each 
draw. Chits/tickets may be drawn one by one and may be continued until a sample of the 
required size is obtained. When the size of population is large, this procedure of 
numbering units on chits/tickets and selecting one after reshuffling becomes cumbersome. 
In practice, it may be too difficult to achieve a thorough shuffling. Human bias and 
prejudice may also creep in this method. 

ii) Use of Random Number Tables:  
A random number table is an arrangement of digits 0 to 9, in either a linear or rectangular 
pattern where each position is filled with one of these digits. A Table of random numbers 
is so constructed that all numbers 0, 1, 2,…, 9 appear independent of each other. Some 
random number tables in common use are: 

• Tippett's random number Tables 

• Fisher and Yates Tables 

• Kendall and Smith Tables 

• A million random digits Table 
Random number tables are the tables of digits 0, 1, 2,…,9 each digit having an equal 
chance of selection at any draw. In 1927, Tippett produced 41,600 digits (from 0 to 9) 
arranged in sets of 4 in several columns and spread over 26 pages. This was followed by 
another publication by two great pioneering statisticians, Sir R.A. Fisher and Frank Yates, 
which contained 15,000 digits formed by listing the 15 - 19th digits in some 20 figure 
logarithm tables. Rand Corporation (1955) published tables containing 1 million digits. 
Kendall and Smith (1938) published tables with 100,000 digits.  
A practical method of selecting a random sample is to choose units one-by-one with the 
help of a Table of random numbers. By considering two-digit numbers, we can obtain 
numbers from 00 to 99, all having the same frequency. Similarly, three or more digit 
numbers may be obtained by combining three or more rows or columns of these Tables. 
The simplest way of selecting a sample of the required size is to select a random number 
from 1 to N and then taking the unit bearing that number. This procedure involves a 
number of rejections since all numbers greater than N appearing in the Table are not 
considered for selection. The procedure of selection of sample through the use of random 
numbers is, therefore, modified and some of these modified procedures are: 

a) Remainder Approach 
b) Quotient Approach 

a) Remainder Approach:  
Let N be an r-digit number and let its r-digit highest multiple be N'. A random number k 
is chosen from 1 to N' and the unit with serial number equal to the remainder obtained on 
dividing k by N is selected, i.e. the selected number is reduced mod (N). If the remainder 
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is zero, the last unit is selected. As an illustration, let N = 123, then highest three-digit 
multiple of 123 is 984. For selecting a unit, one random number from 001 to 984 has to be 
selected. Let the random number selected be 287. Dividing 287 by 123 gives the 
remainder as 41. Hence, the unit with serial number 41 is selected in the sample. Suppose 
that another random number selected is 245. Dividing 245 by 123 leaves 122 as 
remainder. So the unit bearing the serial number 122 is selected. Similarly, if the random 
number selected is 369, then dividing 369 by 123 leaves remainder as 0. So the unit 
bearing serial number 123 is selected in the sample.  

b) Quotient Approach:  

Let N be an r-digit number and let its r-digit highest multiple be *N  such that *N / N d= . 
A random number k is chosen from 0 to ( )*N 1− . Dividing k by d, the quotient q is 
obtained and the unit bearing the serial number (q - 1) is selected in the sample. The 
selected number is reduced mod (N). For example, if q – 1 = -1, then unit bearing serial 
number N – 1 is selected and if q – 1 = 0, then unit bearing serial number N is selected. 
As an illustration, let N = 16 and hence *N 96=  and d = 96/16 = 6. Let the two-digit 
random number chosen is 65 which lies between 0 and 95. Dividing 65 by 6, the quotient 
is 10 and hence the unit bearing serial number (10 - 1) = 9 is selected in the sample. 
Further, if the random number selected is 4, then the quotient is 4/6 = 0, and q –1= -1. 
The unit selected is 15. Similarly, if the random number selected is 9, then the quotient is 
9/6 = 1, and q – 1 = 0. The unit selected is 16. 

8.2 Estimation of Population Total 

Let Y be the character of interest and 1 2 i NY ,Y , ,Y , ,Y   be the values of the character 
from N units of the population. Further, let 1 2 i ny , y , , y , , y   be the sample of size n 

selected by simple random sampling without replacement. For the total 
N

i
i 1

Y Y
=

=∑  we 

have an estimator 
n

i n
i 1

Ŷ N y / n Ny
=

= =∑  

i.e., the sample mean ny  multiplied by the population size N. 

The estimator can be expressed as 

 
( )

n n

i i i
i 1 i 1

Ŷ w y N / n y
= =

= =∑ ∑ , where iw N / n.=   

The constant N / n  is the sampling weight and is the inverse of the sampling fraction 
n / N.   

Alternatively, an estimator for the population total can be written by first defining the 
inclusion probability of a population element. Under SRS, the inclusion probability of a 
population element i is πi = n/N, same or constant for every population element. Based on 
the inclusion probabilities, an estimator of the total can be expressed as a more general 
Horvitz-Thompson-type estimator 

 
n n n

HT i i i i
i 1 i 1 i 1i

1 NŶ  w y    y   y
n= = =

= = =
Π∑ ∑ ∑ . 
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In this case, the estimator Ŷ and HTŶ  obviously coincide, because the inclusion 
probabilities πi = n/N are equal for each i. The Horvitz-Thompson-type estimator is often 
used for example, with probability-proportional to size sampling where inclusion 
probabilities vary. The estimator has the statistical property of unbiasedness in relation to 
the sampling design. Variance of the estimator Ŷ of the population total under SRSWOR 
is given by 

  
2 N

2
SRS i

i 1

N nˆV  ( Y )    1-    (Y Y) (N 1)
n N =

 = − − 
 

∑  

where 
N

i
i 1

Y  Y / N
=

= ∑  is the population mean and 
N

2 2
i

i 1
S (Y Y) /(N 1)

=

= − −∑  is the 

population mean square. 

An unbiased estimator of variance of the estimator Ŷ  of the total, VSRS( Ŷ ), under 
SRSWOR is given by  

 

n
2 2

SRS i n
i 1

2 2

nˆ ˆV ( Y ) N  1-   (y y ) / n(n 1)
N
n                N   1-  s / n
N

=

 = − − 
 
 =  
 

∑
 

where 
n

n i
i 1

y y / n
=

=∑  is the sample mean and s2 is an unbiased estimator of the population 

mean square S2. 
A similar approach applies when sampling is with replacement. In this case, there are Nn 
possible samples. The unbiased estimator of population total, sampling variance of the 
estimator and estimator of the sampling variance are given as 

n

i n
i 1

Ŷ N y / n Ny
=

= =∑  ,  
2

2ˆ( )V Y N
n
σ

=    and    
2

2ˆ ˆ( ) sV Y N
n

=                                                                                                          

where ∑
=

−=
N

i
Ni Yy

N 1

22 )(1σ is the population variance and 2s  is the sample mean square. 

Consider all possible samples of size N which can be drawn from a given population. For 

a without replacement sampling scheme, there will be in all 







n
N  possible samples. For 

each sample, one can compute a statistic, such as the mean, standard deviation etc., which 
will vary from sample to sample.  In this manner, one can obtain a distribution of the 
statistic which is called its sampling distribution. 
From the above, it is clear that under Simple Random Sampling With Replacement 
(SRSWR), 

i) the sample mean  ( )ny  is unbiased for the population mean ( )NY   

ii) sample mean square (s2) is unbiased for the population variance  ( )2σ  



ELEMENTARY CONCEPTS OF SAMPLE SURVEYS AND SIMPLE RANDON SAMPLING 

7.11 

 

iii) V ( )ny  =  σ
2
n

. 

Like-wise, under Simple Random Sampling Without Replacement (SRSWOR),  

i)  the  sample mean  ( )ny    is unbiased for the population mean ( )NY , 

ii) sample mean square (s2) is unbiased for the population mean square )( 2S ,  and 

iii) V ( )ny  = 1 1
n N
−





S2 

8.3 Example 
The data given below pertains to the average yield of wheat crop (in quintals) pertaining 
to 108 Villages in a Block of a District: 

Village Sl. Nos. Yield (in quintals) 

1-10 20 21 32 41 55 22 64 42 28 35 

11-20 25 25 24 32 75 28 29 38 19 19 

21-30 16 28 30 29 29 19 37 34 31 35 

31-40 29 19 27 42 39 11 26 21 45 61 

41-50 16 29 32 40 63 30 21 35 28 18 

51-60 24 32 23 8 35 27 35 25 29 29 

61-70 25 31 38 31 43 21 36 30 37 47 

71-80 15 19 32 19 50 10 27 36 28 43 

81-90 28 25 31 6 4 22 24 39 71 44 

91-100 24 34 18 28 10 70 20 32 42 47 

101-108 16 28 30 29 29 19 37 34   

a) Select a random sample of size 10 by simple random sampling without 
replacement (SRSWOR) and estimate the average yield along with its standard 
error on the basis of selected sample units. 

b) Set up 95% confidence interval for the population mean.                                  

SOLUTION: 
As the population size N=108 is a three digit number, so for selecting a simple random 
sample of size n=10, we shall select three-digit random numbers from the Random 
Number Table (from 000 to 972, which is the highest multiple of 108 up to 999) as 
follows: 
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Random Number Sampling Unit Sl. No. 

(Remainder of Random Number/108) 

Yield  

(q) 

120 12 25 

572 32 19 

649 01 20 

211 103 30 

327 03 32 

673 25 29 

153 45 63 

317 101 16 

586 46 30 

943 79 28 

 Estimate of Population Average yield = 2.29
10
292ˆ 1 ====

∑
=

n

y
yY

n

i
i

nN q 

 Estimate of population total is ˆ
n=Y=Nxy =108x29.2=3153.6q  

 The estimate of standard error of  

 Ŷ  = ( ) ( ) ( )nn yESNyNESYES ˆ..ˆˆˆ ==    

where ( ) s
Nn

yES n 





 −=

11ˆ    and
 

( )∑ −
−

= 22

1
1

ni yy
n

se 24.1706.1533
110

1 q=×
−

=
 

 So, qs 0537.134.170 == . 

 
Hence,

 
 ( ) 9322.30537.133012.00537.13

108
1

10
1ˆ ==






 −= xxyES n  

 The 95% confidence interval for population mean is given by 

o ( )ndfn yESty ˆ
)9110/(05.0 ×± =− 9322.3262.22.29 ×±= 89.82.29 ±= . 
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So, the 95% confidence interval for population mean is (29.2-8.89 to 29.2+8.89) i.e. 

(20.31, 38.09). It can be seen clearly that the population mean qYN 74.30
108
3320

== is 

contained in this confidence interval. It may be mentioned here that out of total number of 
possible samples i.e. 10

108C , the population mean will be contained in such like 
confidence intervals corresponding to 95% of the total number of samples. 

9. Conclusion 
Simple random sampling and probability proportional size designs are most important 
uni-stage design. In most of the practical situations, complex sampling designs are 
utilized on the basis of these uni-stage sampling desisns. Stratified random sampling, 
multistage sampling, multiphase sampling, etc. are some examples of these complex 
designs. 
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1. Introduction 
Sample surveys are widely used as a cost effective instrument of data collection and for 
making valid inferences about population parameters.  Most of the steps involved while 
planning a sample survey are common to those for a complete enumeration.  Three major 
stages of a survey are planning, data collection and tabulation of data.  Some of the 
important aspects requiring attention at the planning stage are as follows: 
1. formulation of data requirements - objectives of the survey 
2. ad-hoc or repetitive survey 
3. method of data collection 
4. questionnaire versus schedules 
5. survey, reference and reporting periods 
6. problems of sampling frames 
7. choice of  sampling design 
8.  planning of pilot survey 
9. field work 
10.  processing of data, and 
11.  preparation of report. 
12.  The different aspects listed above are inter-dependent. 

(i) Formulation of Data Requirements 
The users i.e. the persons or organizations requiring the statistical information are 
expected to formulate the objectives of the survey.  The user’s formulation of data 
requirements is not likely to be adequately precise from the statistical point of view.  It is 
for the survey statistician to give a clear formulation of the objectives of the survey and to 
check up whether his formulation faithfully reflects the requirements of the users.  The 
survey statistician’s formulation of data requirements should include the following: 
i. a clear statement of the desired information in statistical terms 
ii. specification of the domain of study 
iii. the form in which the data should be tabulated 
iv. the accuracy aimed at in the final results and 
v. cost of survey 

Besides, these aspects, one may accommodate some additional items of information, 
directly or indirectly related to the objectives of the survey, which would provide checks 
on the accuracy of data or assist in interpreting the results. 
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(ii) Survey: Ad-hoc or Repetitive 
An ad-hoc survey is one which is conducted without any intention of or provision for 
repeating it, whereas a repetitive survey is one, in which data are collected periodically 
for the same, partially replaced or freshly selected sample units. If the aim is to study only 
the current situation, the survey can be an ad-hoc one.  But when changes or trends in 
some characteristics over time are of interest, it is necessary to carry out the survey 
repetitively. 

(iii) Methods of Collecting Primary Data 
There are varieties of methods that may be used to collect information. The method to be 
followed has to be decided keeping in view the cost involved and the precision aimed at.  
The methods usually adopted for collecting primary data are:  

• Physical observation or measurement 

• Direct Personal interview 

• Mail enquiry 

• Telephonic enquiry 

• Web-based enquiry 

• Method of registration  

• Transcription from records 

• Personal Digital Assistant (PDAs) 

 (a) Direct Personal Interview 
The method of personal interview is widely used in social and economic surveys.  In 
these surveys, the investigator personally contacts the respondents and can obtain the 
required data fairly accurately. The interviewer asks the questions pertaining to the 
objective(s) of survey and the information, so obtained, is recorded on a schedule 
prepared for the purpose. This method is mostly suitable for collecting data on 
conceptually difficult items from respondents. Under this method, the response rate is 
usually good and the information is more reliable and correct. However, more expenses 
and time is required to contact the respondents. 

(b) Questionnaires sent through Mail 
In this method, also known as mail inquiry, the investigator prepares a questionnaire and 
sends it by mail to the respondents. The respondents are requested to complete the 
questionnaires and return them to the investigator by a specified date. The method is 
suitable where respondents are spread over a wide area. Though the method is less 
expensive, normally it has a poor response rate. Usually, the response rate in mail surveys 
has been found to be about 40 per cent. The other problem with this method is that it can 
be adopted only where the respondents are literate and can understand the questions. They 
should also be able to send back their responses in writing. The success of the method 
depends on the skill with which the questionnaire is drafted, and the extent to which 
willing cooperation of the respondents is secured. For rural areas, this method has got its 
obvious limitation and is seldom used. 
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(c) Interview by Enumerators 
This method involves the appointment of enumerators by the surveying agency.  
Enumerators go to the respondents, ask them the questions contained in the schedule, and 
then fill up the responses in the schedule themselves. For example, this method is used in 
collecting information during population census. For success of this method, the 
enumerators should be given proper training for soliciting co-operation of the 
respondents. The enumerators should be asked to carry with them their identity cards, so 
that the respondents are satisfied of their authenticity. They should also be instructed to 
be patient, polite, and tactful. This method can be usefully employed where the 
respondents to be covered are illiterate. 

Telephone Interview 
In case the respondents in the population to be covered can be approached by phone, their 
responses to various questions, included in the schedule, can be obtained over phone. If 
long distance calls are not involved and only local calls are to be made, this mode of 
collecting data may also prove quite economical. It is, however, desirable that interviews 
conducted over the phone are kept short so as to maintain the interest of the respondent. 

Web-based Enquiry 
Data collected by obtaining questionnaires posted on the net. 
 Minimizes loss of data owing to incomplete or incorrectly completed data sets by 

using Client side validation. 
 One of the fastest means of data collection. 
 However, in developing countries where a large proportion of the population does 

not have access to Internet, the method of web-based enquiry may not serve the 
purpose for most of the surveys. 

 Various Internet sites are using this method for opinion poll on certain issues. 

 Method of Registration  
 The respondents are required to register the required information at specified 

places. 
 The vital statistics registration system followed in many countries provide an 

illustration of the registration method.  
 The main difficulty with this method, as in the case of the mail enquiry, is the 

possibility of non-response due to indifference, reluctance, etc. on the part of 
informants to visit the place of registration and supply the required data. 

Transcription from records 
 Used when the data needed for a specific purpose are already available in registers 

maintained in one or more places, making it no more necessary to collect them 
directly from the original units at much cost and effort. 

 The method consists in compiling the required information from the registers for 
the concerned units. 

 Extensively used since a good deal of government and business statistics are 
collected as by-product of routine administrative operations.  
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Personal Digital Assistant (PDAs) 
 A personal digital assistant (PDA), also known as a handheld PC / palmtop 

computer, or personal data assistant, is a mobile device that functions as a personal 
information manager. 

 Nearly all current PDAs have the ability to connect to the Internet.  
 A PDA has an electronic visual display, enabling it to include a web browser, all 

current models also have audio capabilities enabling use as a portable media 
player, and also enabling most of them to be used as mobile phones. Most PDAs 
can access the Internet, intranets or extranets via Wi-Fi or Wireless Wide Area 
Networks.  

Advantages of using Personal Digital Assistant (PDAs) 
 Lightweight and easy to take anywhere. 
 Online data transfer 
 Online data supervision 
 Online data scrutiny 
 Reduce the time lag in data collection, scrutiny and entry  
  Keep track of the enumerator 

(iv)  Questionnaire vs. Schedule  
In the questionnaire approach, the informants or respondents are asked pre-specified 
questions and their replies to these questions are recorded by themselves or by 
investigators. In this case, the investigator is not supposed to influence the respondents.  
This approach is widely used in main enquiries. In the schedule approach, the exact form 
of the questions to be asked are not given and the task of questioning and soliciting 
information is left to the investigator, who backed by the training and instructions has to 
use his ingenuity in explaining the concepts and definitions to the informant for obtaining 
reliable information.   
While planning a survey, preparation of questionnaire or schedules with suitable 
instructions needs to be given careful consideration. Respondent’s bias and Investigator’s 
bias are likely to be different in the two methods.  Simple, unambiguous suitable 
wordings as well as proper sequence of questions are some considerations which 
contribute substantially towards reducing the respondents’ bias.  Proper training, skill of 
the Investigators, suitable instructions and motivation of investigators contribute towards 
reducing Investigator’s bias. 

(v)  Survey, Reference and Reporting Periods  
Another aspect requiring special attention is the determination of survey period, reference 
period and reporting periods. 

i. Survey Period:  The time period during which the required data is collected. 
ii. Reference Period: The time period to which the collective data for all the units 

should refer. 
iii. Reporting Period: The time period for which the required statistical information 

is collected for a unit at a time (reporting period is a part or whole of the reference 
period).                          
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The reporting period should be decided after conducting suitable studies to examine recall 
errors and other non-sampling errors.  For items of information subject to seasonal 
fluctuations, it is desirable to have one complete year as the survey and reference period, 
the data being collected every month or season with suitable reporting periods for the 
same or different sets of sample units. 

(vi)  Sampling Frames 
A sampling frame is a list of all the items in your population. It’s a complete list of all 
the units one wants to study.  One of the most important practical problems in 
conducting sample surveys is that lists that can be used for selecting the samples are 
generally incomplete or out of date. Therefore, sample surveys can produce seriously 
biased estimates of the population parameters. Updating a list is a difficult and very 
expensive operation that has partially become easier due to the recent advances in 
managing databases. In any case, the single most important and expensive factor to be 
considered for updating a list is the data collection effort. 

Types of Sampling Frames 
There are many types of frames though the most common one is the list frame. Besides 
this there are area frames, Multi-Stage Frames, Frame for Series of Surveys. Each frames 
have its own advantages and disadvantages some of which are listed below. 

• List Frame 

• Area Frame 

• Multi-Stage Frame 

• Frame for Series of Surveys 

Imperfectness in Sampling Frames 
The Sampling frame is the key stone around which the sample is selected and the 
enumeration procedure must be determined. The nature & details of the frame become the 
basis for the choice of appropriate sampling design. Imperfection in frame arises due to 
two main reasons (i) Deviations in Coverage (ii) Deviation of content 
Deviations in Coverage is mainly due to: 

• Reporting units belonging to the target population are not included in the sampled 
population 

• Reporting units belonging to the target population are contained in the sampled 
population more than once. 

• Reporting units contained in the sampled population do not belong to the target 
population 

Deviation of content is mainly due to following reasons: 

• The frame provides incorrect auxiliary information on reporting unit. 

• Auxiliary information for some of the reporting units is lacking in the frame. 

Errors occurring in Sampling frame affecting the accuracy of estimates 

• Incompleteness 

• Non- Coverage  
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• Over – Coverage or Duplication  

• Presence of Superfluous Units 

• Incorrect or Inaccurate Information  

• Non / Incomplete Auxiliary Information 

• Non-Response (Out of scope) 

Construction of sampling frames 
The construction of sampling frame is to be done taking utmost care. First one should be 
clear regarding the choice of frame units and various parameters related to the units. Once 
this is done, the frame is developed and after the development of frame, its validation is 
required. These three major points to be considered during construction of sampling 
frames are mentioned below: 

Choice of frame units 

• Cost consideration in establishing and maintaining 

• Availability of type of information for frame units 

• Stability of frame units over time 

• Time needed to construct frame 

Development of frame 
Construction of database including maps for area frames 

Validation of frame 

• Coverage achieved 

• Quality of information 

Maintenance  and Updation of sampling frames 

• Removing duplicates 

• Removing ‘deaths’, such as 
 Closed establishments 
 Burned down or demolished housing units 

• Incorporating ‘births’, such as 
 New establishments 
 New housing units in enumeration areas 

• Updating auxiliary information 

• To reflect population changes so it continues to be ‘representative’ 
 Prepare new listings of households in sample clusters 
 Periodical update of entire frame to account for post-censual high-

growth areas 
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 (vii) Choice of Sampling Design 
The choice of a suitable sampling design for a given survey situation is one of the most 
important step in the process of planning sample surveys. The principle generally adopted 
in the choice of a design is either reduction of overall cost for a pre-specified permissible 
error or reduction of margin of error of the estimates for given fixed cost. Generally, a 
stratified uni-stage or multi-stage design is adopted for large scale surveys. For efficient 
planning, various auxiliary information, which is normally available, is utilized at various 
stages e.g. the area under particular crop as available for previous years is normally used 
for size stratification of villages. If the information is available for each and every unit of 
the population and there is wide variability in the information then it may be used for 
selecting the sample through probability proportional to size methods The choice of 
sample units, method of selecting sample and determination of sample size are some of 
the important aspects in the choice of proper sample design. 

(viii) Pilot Surveys 
Where some prior information about the nature of population under study, and the 
operational and cost aspects of data collection and analysis is not available from past 
surveys.  It is desirable to design and carry out a pilot survey.  It will be useful for 

i. testing out provisional schedules and related instructions, 
ii. evolving suitable procedure for field and tabulation work, and  
iii. training field and tabulation staff. 

(ix) Field Work 
While planning the field work of the survey, a careful consideration is needed regarding 
choice of the field agency. For ad-hoc surveys, one may plan for ad-hoc staff but if survey 
is going to be a regular activity, the field agency should also be on a regular basis.  
Normally for regular surveys, the available field agency is utilized. A regular plan of 
work by the enumerators along with proper supervision is an important consideration for 
getting a good quality of data. 

(x) Processing of Survey Data 
The analysis of data collected in a survey has broadly two facets:  

i. tabulation and summary of data and  
ii. subject analysis.  

The first task, which is of primary importance, is the reduction of collected data into 
meaningful tables. The tables should be presented along with the background information 
such as the objective(s) of the survey, the sampling design adopted, method used for data 
collection and tabulation, and margin of error applicable to the results.  These margins of 
error provide the idea about the precision of estimates. 
Subject analysis to be taken up after preparing summary tables, should include cross 
tabulation of data by the meaningful, geographical, economy, demographic or other 
breakdowns to study their relationship and trends among various characteristics. This is a 
detailed technical analysis and is likely to be time consuming. Hence, this part should not 
be tied up with the first part as otherwise the publication of the survey results might get 
delayed. 
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(xi) Preparation of Report  
Although there are no set guidelines for presentation of results and preparation of report, 
however some points, which serve as guidelines in the preparation of sample survey 
reports, are given below: 

i. Introduction & review of literature 
ii. Objective(s) 
iii. Scope 
iv. Subject coverage 
v. Method of data collection 
vi. Survey references and recording 
vii. Sampling design and estimation procedure 
viii. Tabulation procedure 
ix. Presentation of results 
x. Activity of results 
xi. Cost structure of the survey 
xii. Agency for conducting the survey 
xiii. References 

2. Questionnaire Designing  
Questionnaires and schedules are forms for recording the information as envisaged under 
the survey. Designing of these is one of the most important aspects of the survey. The 
words ‘questionnaire’ and ‘schedule’ as per the current practice are generally used 
synonymously. However, a technical distinction is sometimes made. The term 
questionnaire applies to forms distributed through mails or given to informants to be 
filled in, by and large, without the assistance or supervision of the interviewer, while a 
schedule is the form carried and filled in by the investigator or filled in his presence. 
The question as to whether the questionnaire or schedule approach is to be used in a 
survey for collecting the required information needs consideration. In the former 
approach the respondents are asked pre-specified questions and their replies to these 
questions are recorded by themselves or by the investigators. This approach presumes that 
the respondents are capable of understanding and answering the questions, since in this 
case the investigator is not supposed to influence the responses in any way by his 
interpretation of the terms used in the form. This method is widely used in mail inquiries. 
In the schedule approach, the exact form of the questions to be asked are not given and 
the task of questioning and eliciting information is left to the investigator, who backed by 
his training, experience and instructions has to use his ingenuity in explaining the 
concepts and definitions to the informants for obtaining reliable information. Detailed 
instructions are, however, given to the investigator about concepts, definitions and 
procedures to be used in collecting data for the survey. In various socio-economic 
surveys, the method of collecting data after meeting the respondents and obtaining 
information of various characters by inquiry is commonly used. 
From the above, it may appear that the schedule approach is subject to more investigator 
bias than the questionnaire approach, as there is added scope in it for the investigator to 
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influence the responses of the informants. This will not be so, if well-trained and skilled 
investigators are employed for the purpose. On the other hand, the respondent bias may 
be substantial in questionnaire approach, if the survey items are complicated and involve 
conceptual difficulties.  In such a situation, it would be desirable to train investigators for 
explaining the terms involved rather than to burden the respondent with elaborate 
instructions and clarifications. As the cost of questionnaire approach is generally less than 
that of schedule approach, a decision as to which of the two methods should be followed 
in a particular survey needs to be arrived at after carefully examining the possible effects 
of investigator and respondent biases and the cost involved. 
Designing of schedules/questionnaires with suitable instructions needs to be given careful 
consideration in planning a survey as utility of the results of the survey depends to a large 
extent on this. The framing of schedules or items should be done in a simple, 
unambiguous, interesting and tactful manner and they should be so worded as not to 
influence the answers of the respondents. The sequence of items is equally important.  
Those likely to help the investigator in establishing a good rapport with the respondents 
should be put first and item relating to a particular aspect of the survey should come 
together in a schedule/questionnaire. As far as possible the items should be such that the 
answers can be recorded in numbers or specific codes. 
To reduce the non-sampling errors arising from ambiguous definitions and 
misunderstanding of the questions by investigators/respondents, it is desirable to give 
some typical examples, detailed explanatory notes and instructions for the items of 
information included in the schedule/questionnaire. Clarification of doubts raised by the 
investigators is to be done in such a manner that there is uniformity in the procedures 
followed by different investigators. 
From what has been discussed above, it will appear that there are several considerations, 
which have to be kept in mind while designing the schedules.  It is difficult to list out all 
of them. There may be some which are specific to a particular survey and may require 
special consideration. In the following paragraphs the main important considerations, 
which should be borne in mind while designing the schedule/questionnaire, are given. 

2.1 Three Kinds of Schedule Items 
The information included in the schedule may be classified under the following three 
headings:  

2.1.1 Identification Information 
This ensures that the schedule will not be misplaced or mixed-up, lost or duplicated; that 
the information on it pertains to the particular sample case, and the interviewer and 
respondent can be identified e.g. year, season, crop, name of the district, block, village, 
name of cultivator and his father’s name etc. are entered against identification particulars. 

2.1.2 Social Background or Census Type Factual Data 
This information about respondent provides the variables by which the survey data are to 
be classified and also the basis for evaluating the sample viz. cultivator’s total holding 
and holding size group, category namely, SC, ST, or General, monthly income, total 
number of family members, tenancy status, educational qualifications etc. 

2.1.3 Questions on the Subject of the Survey 
These questions may be directed towards obtaining more or less objective facts or 
towards revealing attitudes and opinions on matters of current interest. 
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2.2 Considerations to be borne in Mind while Designing Schedules/Questionnaires 
The first step in designing a schedule/questionnaire is to define the problem to be tackled 
by the survey and hence to decide on what questions to be asked. The temptation is 
always to cover too much, to ask everything that might turn out to be interesting. This 
must be resisted. Lengthy questionnaires are as demoralizing for the interviewer as for the 
respondent, and the questionnaire should be no longer than is absolutely necessary for the 
purpose. 

2.3 Agency which will Make the Entries in the Schedules 
If a highly trained investigator is to ask the questions and enter the replies, the form 
should be different from the one drawn for informant to fill out himself since the 
interviewer can be instructed regarding details which will ensure uniform definitions, 
entries and interpretations. 
The terminology and questions should be adapted to the type of people who will give the 
information. For example, a questionnaire addressed to specialist familiar with the subject 
matter of the survey can be much more technical than the one directed to a cross-section 
of the population. In designing schedules that are to be filled up by farmers, housewives, 
employers etc. The level of education should be taken into consideration. 

2.4 Physical Appearance of the Schedule and Cooperation Received for the Survey 
In surveys by mail, there is no doubt that an attractive looking questionnaire is a selling 
point for cooperation. Consequently, an unattractive one may cause the recipient to put it 
aside or even throw it. The fact that the form looks 'short', however, often contributes to 
securing individual's consent to be interviewed. Informants will tolerate a short 
interruption of only to get rid of the interviewer, but they may flatly refuse to answer a 
long list of questions. 

2.5 How are the Questions to be worded? 
The choice of the language used in expressing a question is of the greatest importance.  It 
is too often presumed that the respondents must be aware of the concepts and definitions 
used in the questionnaire since these are obvious to the survey team. If the terminology is 
ambiguous, the respondents will have to use their own judgment and different persons 
will judge differently. This causes confusion and errors. Ambiguity arises with double 
barreled questions, such as, the following question to a public transport "Do you like 
travelling on trains and buses”?  Respondent liking one and disliking other would be in a 
dilemma in answering this question.  Clearly it needs to be divided into two questions. 

2.5.1 Use simple words which are familiar to all potential informants 
The basic principle in good question wording is to use the simplest words that will 
convey the exact meaning. Meaning of the questions becomes clear when the words used 
are well known and mean the same thing to everyone. The question 'Do you operate 
land?'  used in agricultural surveys is poor.  It is not clear whether the person is an owner 
cultivator or a tenant cultivator. 

2.5.2 Make the Questions as Concise as Possible  
A question that contains long dependent or conditional clauses may confuse the 
informants. In trying to comprehend the question as a whole he may over-look or forget 
clause and hence his answer may be wrong. However, in opinion or attitude survey, it 
may be important to have the complete question printed on the schedule. 
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2.5.3 Formulate the Question to Yield Exactly the Information Desired 
The question should be self-explanatory. If the questions call for an answer in terms of 
units, these units must be clearly defined. Suppose we want to ask the cultivator the seed 
rate used for a specific crop. We should clearly mention whether the seed rate is to be 
reported in kg/ha or in kg for the entire field. 

2.5.4 Avoid Multiple Meaning Questions 
Unless each question covers only one point, there will be confusion as to which one, the 
answer applies to. Such items should be formulated as two or more questions so that 
separate answer can be secured. 

2.5.5 Avoid Ambiguous Questions  
A question which means different things to different people is ambiguous. The best 
course is to pre-test the questions through a pilot survey and thus detect ambiguities e.g. 
in a survey on consumption of milk and ghee, suppose the question is about the quantity 
of milk and ghee consumed during the month. It should be clearly mentioned whether it is 
during last calendar month or one month prior to Investigator's visit. 

2.5.6 Avoid Leading Questions 
A leading question is one which, by its content, structure or wording leads the respondent 
in the direction of a certain answer. In other words, all questions which produce biased 
answers may be regarded as leading questions. Such questions should be avoided. 

2.5.7 Keep to a Minimum the Amount of Writing Required on the Schedule 
When feasible, use symbols for the replies. Explain these symbols somewhere on the 
schedule. If the possible responses can be foreseen by pre-testing, the questions can be 
answered as Yes or No, by writing a number, by putting a cross, by putting a symbol or 
by encircling the correct answer. 

2.5.8 Include a Few Questions that will serve as Checks on the Accuracy and 
Consistency of the Questions as a Whole 
Two questions that bring out the same facts though worded differently and placed in 
different sections of the schedule, serve to check the internal consistency of the replies, 
e.g., in a socio-economic survey, suppose we are asking the total holding of the farmer. It 
would be better if we include the area owned, leased-in and leased-out separately in some 
block of the proforma.  This serves as a check to tally the total holding size. 

2.6 Handbook of Instructions for the Field Staff 
It would be desirable to prepare a comprehensive handbook of instructions explaining 
concepts and definitions of various items for filling in the questionnaire/schedule under 
the survey and a copy of the same should be supplied to each Field Investigator. 

2.7 Sequence of Questions 
Careful consideration should be given to the problem of the order in which questions 
should appear. In order to guard against confusion and misunderstanding, questions 
should be arranged logically, one question leading to the next. Specific questions should 
always follow general questions. The opening question should be very interesting; this 
will ensure that the respondents cooperate in parting with the desired information for the 
survey. Questions which might embarrass the respondents should be placed towards the 
middle or end of the questionnaires. Questions with an emotional tinge may be 
interspersed between items which elicit more neutral reactions. 
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3.  Conclusion 
The problem of designing of questionnaires/schedules is not an easy task.  Even if one 
follows all the accepted principles, there usually remains a choice of several question 
forms, each of which seems satisfactory. Every surveyor tries to phrase his questions in 
simple, everyday language, to avoid vagueness and ambiguity and to use neutral wording. 
His difficulty lies in judging whether, with any particular question, he has succeeded in 
these aims. He may appreciate perfectly that leading questions are to be avoided but how 
can he know which words will be 'leading' with the particular question, survey and 
population that confront him, perhaps for the first time? 
The answer to this question lies in detailed pre-tests and pilot studies, more than anything 
else, they are the essence of a good questionnaire. However the experienced questionnaire 
designer is, any attempt to shortcut these preparatory stages will seriously jeopardize the 
quality of the questionnaire; past experience is a considerable asset, but in a fresh survey, 
there are always new aspects which may perhaps not be immediately recognized, but 
which exist and must be investigated through pre-tests and pilot studies.  
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1. Stratified Sampling 
1.1 Introduction 
The basic idea in stratified random sampling is to divide a heterogeneous population into 
sub-populations, usually known as strata, each of which is internally homogeneous in which 
case a precise estimate of any stratum mean can be obtained based on a small sample from 
that stratum and by combining such estimates, a precise estimate for the whole population 
can be obtained. Stratified sampling provides a better cross section of the population than the 
procedure of simple random sampling. It may also simplify the organization of the field 
work. Geographical proximity is sometimes taken as the basis of stratification. The 
assumption here is that geographically contiguous areas are often more alike than areas that 
are far apart. Administrative convenience may also dictate the basis on which the 
stratification is made. For example, the staff already available in each range of a forest 
division may have to supervise the survey in the area under their jurisdiction. Thus, compact 
geographical regions may form the strata. A fairly effective method of stratification is to 
conduct a quick reconnaissance survey of the area or pool the information already at hand 
and stratify the forest area according to forest types, stand density, site quality etc. If the 
characteristic under study is known to be correlated with a supplementary variable for which 
actual data or at least good estimates are available for the units in the population, the 
stratification may be done using the information on the supplementary variable. For instance, 
the volume estimates obtained at a previous inventory of the forest area may be used for 
stratification of the population. 
In stratified sampling, the variance of the estimator consists of only the ‘within strata’ 
variation. Thus the larger the number of strata into which a population is divided, the higher, 
in general, the precision, since it is likely that, in this case, the units within a stratum will be 
more homogeneous. For estimating the variance within strata, there should be a minimum of 
2 units in each stratum. The larger the number of strata the higher will, in general, be the cost 
of enumeration. So, depending on administrative convenience, cost of the survey and 
variability of the characteristic under study in the area, a decision on the number of strata will 
have to be arrived at.  

1.2 Allocation and Selection of the Sample within Strata 
Assume that the population is divided into k strata of N1, N2 ,…,Nk units respectively, and that 
a sample of n units is to be drawn from the population. The problem of allocation concerns 
the choice of the sample sizes in the respective strata, i.e., how many units should be taken 
from each stratum such that the total sample is n. 
Other things being equal, a larger sample may be taken from a stratum with a larger variance 
so that the variance of the estimates of strata means gets reduced. The application of the 
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above principle requires advance estimates of the variation within each stratum. These may 
be available from a previous survey or may be based on pilot surveys of a restricted nature. 
Thus, if this information is available, the sampling fraction in each stratum may be taken 
proportional to the standard deviation of each stratum.  
In case the cost per unit of conducting the survey in each stratum is known and is varying 
from stratum to stratum an efficient method of allocation for minimum cost will be to take 
large samples from the stratum where sampling is cheaper and variability is higher. To apply 
this procedure one needs information on variability and cost of observation per unit in the 
different strata. 
Where information regarding the relative variances within strata and cost of operations are 
not available, the allocation in the different strata may be made in proportion to the number 
of units in them or the total area of each stratum. This method is usually known as 
‘proportional allocation’. 
For the selection of units within strata, In general, any method which is based on a 
probability selection of units can be adopted. But the selection should be independent in each 
stratum. If independent random samples are taken from each stratum, the sampling procedure 
will be known as ‘stratified random sampling’. Other modes of selection of sampling such as 
systematic sampling can also be adopted within the different strata.  
Stratification, if properly done as explained in the previous sections, will usually give lower 
variance for the estimated population total or mean than a simple random sample of the same 
size. However, a stratified sample taken without due care and planning may not be better 
than a simple random sample. 

2. Multistage Sampling 
2.1 Introduction 
Cluster sampling is a sampling procedure in which clusters are considered as sampling units 
and all the elements of the selected clusters are enumerated. One of the main considerations 
of adopting cluster sampling is the reduction of travel cost because of the nearness of 
elements in the clusters. However, this method restricts the spread of the sample over 
population which results generally in increasing the variance of the estimator. In order to 
increase the efficiency of the estimator with the given cost it is natural to think of further 
sampling the clusters and selecting more number of clusters so as to increase the spread of 
the sample over population. This type of sampling which consists of first selecting clusters 
and then selecting a specified number of elements from each selected cluster is known as 
sub- sampling or two stage sampling, since the units are selected in two stages. In such 
sampling designs, clusters are generally termed as first stage units (fsu’s) or primary stage 
units (psu’s) and the elements within clusters or ultimate observational units are termed as 
second stage units (ssu’s) or ultimate stage units (usu’s). It may be noted that this procedure 
can be easily generalized to give rise to multistage sampling, where the sampling units at 
each stage are clusters of units of the next stage and the ultimate observational units are 
selected in stages, sampling at each stage being done from each of the sampling units or 
clusters selected in the previous stage. This procedure, being a compromise between uni-
stage or direct sampling of units and cluster sampling, can be expected to be (i) more 
efficient than uni-stage sampling and less efficient than cluster sampling from considerations 
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of operational convenience and cost, and (ii) less efficient than uni-stage sampling and more 
efficient than cluster sampling from the view point of sampling variability, when the sample 
size in terms of number of ultimate units is fixed. 
It may be mentioned that multistage sampling may be the only feasible procedure in a 
number of practical situations, where a satisfactory sampling frame of ultimate observational 
units is not readily available and the cost of obtaining such a frame is prohibitive or where 
the cost of locating and physically identifying the usu’s is considerable. For instance, for 
conducting a socio-economic survey in a region, where generally household is taken as the 
usu, a complete and up-to-date list of all the households in the region may not be available, 
whereas a list of villages and urban blocks which are group of households may be readily 
available. In such a case, a sample of villages or urban blocks may be selected first and then a 
sample of households may be drawn from each selected village and urban block after making 
a complete list of households. It may happen that even a list of villages is not available, but 
only a list of all tehsils (group of villages) is available. In this case a sample of households 
may be selected in three stages by selecting first a sample of tehsils, then a sample of villages 
from each selected tehsil after making a list of all the villages in the tehsil and finally a 
sample of households from each selected village after listing all the households in it. Since 
the selection is done in three stages, this procedure is termed as three stage sampling. Here, 
tehsils are taken as first stage units (fsu’s), villages as second stage units (ssu’s) and 
households as third or ultimate stage units (tsu’s).  
One of the advantages of this type of sampling is that at the first stage the frame of fsu’s is 
required which is generally easily available and at the second stage the frame of ssu’s is 
required for the selected fsu’s only and so on. Moreover, this method allows the use of 
different selection procedures in different stages. It is because of these considerations that 
multistage sampling is used in most of the large scale surveys. It has been found to be very 
useful in practice. It is noteworthy that Prof. P.C. Mahalanobis used this sampling procedure 
in crop surveys carried out in Bengal during the period 1937-1941, and he had termed this 
procedure as nested sampling. Cochran (1939) and Hansen and Hurwitz (1943) have 
considered the use of this procedure in agricultural and population surveys respectively. 
Lahiri (1954) discussed the use of multistage sampling in the Indian Sample Survey. 

2.2 Two Stage Sampling With Equal Probabilities, Equal First Stage Units  
2.2.1 Estimation of population mean  
Let the population under study consists of NM elements grouped into N first stage units, each 
first stage unit containing M second stage units. 
Let us denote 
Yij = the value of the characteristic under study for the j-th second stage unit of the i-th first 

stage unit, j = 1,2,…,M; i= 1,2,…,N 

i.Y  = ∑
=

M

1j
ijY

M
1 , population mean of i-th fsu, 

N M N

.. ij i.
i 1 j 1 i 1

1 1Y Y Y
NM N= = =

= =∑∑ ∑ , the population mean. 
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Further, let a sample of size nm is selected by first selecting n fsu’s from N fsu’s by simple 
random sampling without replacement (srswor) and then selecting m ssu’s from M ssu’s by 
srswor from each of the selected fsu’s. Let us denote 

∑
=

=
m

1j
ijim y

m
1y , sample mean based on m selected ssu’s from the i-th fsu, 

∑∑∑
== =

==
n

1i
im

n

1i

m

1j
ijnm y

n
1y

nm
1y , the sample mean based on all nm units in the sample. 

Clearly, nmy  is an unbiased estimator of ..Y  with its variance given by  
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It is observed that the variance of sample mean ( Ŷ ) in two stage sampling consists of two 
components, the first representing the contribution arising from sampling of first stage units 
and the second arising from sub-sampling within the selected first stage units. We note the 
following two cases: 
Case (i)   n = N, corresponds to stratified sampling with N first stage units as strata and m 
units drawn from each stratum. 
Case (ii)  m = M, corresponds to cluster sampling. 
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1. Introduction 

The need to gather information arises in almost every conceivable sphere of human 
activity. Many of the questions that are subject to common conservation and controversy 
require numerical data for their resolution. The data collected and analyzed in an 
objective manner and presented suitably serve as a basis for taking policy decisions in 
different fields of daily life.The important users of statistical data, among others, include 
government, industry, business, research institutions, public organizations and 
international agencies and organizations. The inferences drawn from the data help in 
determining future needs of the nation and also in tackling social and economic problems 
of people. Data on agricultural production are of immense use to the state for planning to 
feed the nation.  

In sampling theory if the auxiliary information, related to the character under study, is 
available on all the population units, then it may be advantageous to make use of this 
additional information in survey sampling. One way of using this additional information 
is in the sample selection with unequal probabilities of selection of units. The knowledge 
of auxiliary information may also be exploited at the stratification and estimation stage.  

 

2. Sampling with Varying Probability 

Under certain circumstances, selection of units with unequal probabilities provides more 
efficient estimators than equal probability sampling, and this type of sampling is known 
as unequal or varying probability sampling. In the most commonly used varying 
probability sampling scheme, the units are selected with probability proportional to a 
given measure of size (PPS) where the size measure is the value of an auxiliary variable x 
related to the characteristic y under study and this sampling scheme is termed as 
probability proportional to size sampling. For instance, the number of persons in some 
previous period may be taken as a measure of the size in sampling area units for a survey 
of socio-economic characters, which are likely to be related to population. Similarly, in 
estimating crop characteristics the geographical area or cultivated area for a previous 
period, if available, may be considered as a measure of size, or in an industrial survey, the 
number of workers may be taken as the size of an industrial establishment. 

Since a large unit, that is, a unit with a large value for the study variable y, contributes 
more to the population total than smaller units, it is natural to expect that a scheme of 
selection which gives more chance of inclusion in a sample to larger units than to smaller 
units would provide estimators more efficient than equal probability sampling. Such a 
scheme is provided by PPS sampling, size being the value of an auxiliary variable x 
directly related to y. It may appear that such a selection procedure would give biased 
estimators as the larger units are over-represented and the smaller units are under-
represented in the sample. This would be so, if the sample means is used as an estimator 
of population mean. Instead, if the sample observations are suitably weighted at the 
estimation stage taking into consideration their probabilities of selection, it is possible to 
obtain unbiased estimators. Mahalanobis (1938) has referred to this procedure in the 
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context of sampling plots for a crop survey and this procedure has been discussed in 
detail by Hansen and Hurwitz (1943). 

There is a basic difference between simple random sampling and pps sampling 
procedures. In simple random sampling, the probability of drawing any specified unit at 
any given draw is the same, while in pps sampling, it differs from draw to draw. The 
theory of pps sampling is consequently more complex than that of simple random 
sampling. In PPS sampling, the units may be selected with or without replacement. We 
shall discuss the theory appropriate to pps sampling with replacement (PPS wr) and pps 
sampling without replacement (PPS wor) in following sections. 

 

3. Sample selection procedures under PPS sampling with replacement  

i) Cumulative Total Method 

To draw a sample of size n from a population of size N with probability proportional to 
size and with replacement, we proceed as follows: 

If Xi is an integer proportional to the size of the i-th unit, i = 1,2,…N, we form successive 

totals X1 , X1+X2, X1+X2+X3 , …,


N

1i
iX . Draw a random number R not exceeding 




N

1i
iX from a table of random numbers. If X1+X2+…+Xi-1< R  X1+X2+…+Xi , the i-th 

unit is selected. Repeat the procedure n times to get a sample of size n. 

The main disadvantage of this method is that it involves cumulation of the sizes and 
writing down of the cumulative totals, which is time consuming and costly when N is 
large. For instance, if this method is used for selecting a sample of factories with 
probability proportional to the number of workers from the population of about 45,000 
factories in India or for selecting a PPS sample of farms or fields with area as the size 
from a large number of such units, the selection operation becomes prohibitively costly. 
A procedure which avoids the need for calculating cumulative totals for each unit, is 
considered in the next sub-section. Of course, the work of cumulation is simple when the 
population is small. 

ii) Lahiri’s Method 

Lahiri suggested a method of PPS selection in the year 1951, which does not require 
cumulation of sizes at all. In this approach a pair of random numbers, say (i,j) is selected 
such that 1 i  N and 1 j  M, where M is the maximum of the sizes of the N units in 
the population. If j  Xi , the i-th unit is selected, otherwise it is rejected and another pair 
of random numbers is chosen. For selecting a sample of n units with probability 
proportional to size and with replacement, the procedure is to be repeated till n units are 
selected. It can be seen that the method leads to the required probability of selection. 

Example 1. A village has 10 holdings consisting of 50,30,45,25,40,26,24,35, 28 and 27 
fields, respectively. Select a sample of four holdings with the replacement method  and 
with probability proportional to the number of fields in the holding. The first step in the 
selection of holdings is to form cumulative totals as shown below.  
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S.N. of 
holdings 

Size 
(Xί) 

Cumulative 
Size 

Numbers 
associated 

1 50 50 1-50 

2 30 80 51-80 

3 45 125 81-125 

4 25 150 126-150 

5 40 190 151-190 

6 26 216 191-216 

7 44 260 217-260 

8 35 295 261-295 

9 28 323 296-323 

10 27 350 324-350 

To select a holding, a random number not exceeding 350 is drawn with the help of a 
random number table. Suppose the random number selected is 123. It can be seen from 
the cumulative totals that the number is associated with the group 81-125, i.e. the  
3rdholding is selected corresponding to the random number 123. Similarly, 3 more 
random numbers need to be selected. Suppose, these numbers are 346, 165 and 094. Then 
the holdings selected corresponding to these random numbers are the 10th, 5thand 3rd, 
respectively. Hence, a sample of 4 holdings selected with probability proportional to size 
will contain the 3rd, 10th, 5th, and 3rd Holdings. 

Here, N= 10, m= 50. For selection by Lahiri’s method, first, we have to select a random 
number which is not greater than 10 and a second random number which is not greater 
than 50. Referring to the random number table, the pair is (10,13). Hence , the 10th unit is 
selected in the sample. Similarly, choosing other pairs , we can have (4, 26), (5,35), 
(7,26). The pair (4,26) is rejected as 26 is greater than the size value (25) and so another 
pair is drawn which turns out to be (8, 16). Hence, the sample will consist of the holdings 
with serial numbers 10, 5, 7, and 8. 

 

4. Estimation of the population mean ( Y ) 

Let y be the characteristic under study and denote by Yi , the y-value for the i-th unit in 
the population, i=1,2,…,N. Pi  be the probability of selecting the i-th unit in the 

population.Obviously, 


N

1i
iP =1. We shall now consider the problem of estimating the 

population mean Y  based on a sample of n units selected with probabilities Pi and with 
replacement.  

Let,
i

i
i PN

Y
Z  ,  i = 1,2,…,N. 
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As an estimator of Y , consider 
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z  is an unbiased estimator of Y  as E( z ) = Y . 

Further, since the units are selected with replacement, 
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Estimate of variance is given by 

 2
z

2
z

2
z )s(Eas

n

s
)z(V̂  where   






n

1i

2
i

2
z zz

1n

1
s . 

Example 2. A sample survey was conducted to study the yield of wheat in Haryana. 
These dataset is available in Singh and Chaudhary (1986). A sample of 20 farms from a 
total of 100 was taken, with probability proportional to the area under wheat crop, with 
replacement method. The total area under wheat crop (X) was 484.5 hectares. The area 
under crop (x) and yield (y) were noted in hectares and quintals per hectare, 
respectively.The sample selected by the cumulative methods was 

Area under Crop 4.8 4.1 1.3 5.2 6.9 6.0 2.0 6.3 5.2 4.2 

Yield of Crop  22 19 6 25 54 43 4 40 28 29 

Area under Crop  4.8 5.9 5.8 5.8 5.1 4.7 5.6 5.2 4.0 4.6 

Yield of Crop  22 39 39 44 30 27 34 31 18 31 

Here, N= 100, n = 20, X = 484.5 

The estimate of average yield/farm is given by 

 
n n

i i
PPS

i 1 i 1i i

1 y X y
Ŷ

n NP nN x 

   = 484.51205930/10020 = 29.11. 

The estimate of ariance of the estimator is  

      
2

2484.5 728.1421ˆˆ 20 29.11 2.00
20 19 100 100PPSV Y

 
   

   
 

The standard error of PPSŶ  2.00 = 1.41. 

The estimate of variance of the estimate based on simple random sample on assumption 
of the PPS sample is given by  
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 
 

  2
2

100 484.4 4156.05 1ˆˆ 29.11 2.00
20 10020 100

SRSV Y
     
  

=7.64 

Hence, the percentage gain in precision due to PPS sampling as compared to SRSWR, is 
given by  

 Percentage gain in precision = 
   

 
ˆ ˆˆ ˆ

100
ˆˆ

SRS PPS

PPS

V Y V Y

V Y


  

= 
7.64 2.00

100 282
2.00


  . 

 

5. PPS sampling without replacement 

It is generally observed that sampling without replacement provides a more efficient 
estimator than sampling with replacement, since the effective sample size is more in the 
former than in the latter. Considerable development has taken place in the field of 
sampling with varying probabilities without replacement since 1950. But most of the 
suggested procedures, estimators and variance estimators are rather complicated and 
hence these are not commonly used in practice, especially in large-scale sample surveys 
with a small sampling fraction, since in such cases the efficiencies of sampling with and 
without replacement are not likely to differ much. However, it may be worthwhile to use 
these procedures of selection and estimation, if the sampling fraction is moderately large, 
as in that case the gain in efficiency in sampling without replacement is likely to be 
substantial. 

5. Conclusion 

Simple random sampling and probability proportional size designs are most important uni-
stage design. In most of the practical situations, complex sampling designs are utilized on the 
basis of these uni-stage sampling desisns. Stratified random sampling, multistage sampling, 
multiphase sampling, etc. are some examples of these complex designs. 
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1. Introduction 

In sampling theory the auxiliary information is being utilized in following ways: 

 Utilization of information at pre-selection stage i.e. for stratifying the population. 

 Utilization of information at selection stage i.e. in selecting the units with 
probabilities proportional to some suitable measure of size (size being based on 
some auxiliary variables). 

 Utilization of information at estimation stage i.e. in formulation of the  
ratio-type, regression, difference and product estimators etc. 

 Auxiliary information may also be utilized in mixed ways. 

Usually the information available is in the form that: 

 The values of the auxiliary character(s) are known in advance for each and every 
sampling unit of the population. 

 The population total(s) or mean(s) of auxiliary character(s) are known in advance. 

 If it is desired to stratify the population according to the values of some variate x, 
their frequency distribution must be known. 

The use of auxiliary information at estimation stage in the formation of ratio-type and 
regression estimators and sampling scheme providing unbiased regression estimator has 
been discussed in the following sections. 

In sample surveys, many a time the characteristic y under study is closely related to an 
auxiliary characteristic x, and data on x are either readily available or can be easily 
collected for all the units in the population. In such situations, it is customary to consider 
estimators of population mean NY  of survey variable y that use the data on x and are more 

efficient than the estimators which use data on the characteristic y alone. The fact that the 
data on the auxiliary variable can be used even at a later stage after selecting the sample, 
encourages such procedures. Two types of these commonly used methods are as follows: 

 the ratio-type method of estimation 

 the regression method of estimation 

 

2. Ratio-Type Method of Estimation 

Let a sample of size n be drawn by SRSWOR (Simple random sampling without 
replacement) from a population of size N. Denote by 

iy  = the value of the characteristic under study for the ith unit of the population, 

ix   =   the value of the auxiliary characteristic on the ith unit of the population, 
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Y   = the total of the y values in the population, 

X   = the total of the x values in the population, 

i

i
i x

y
r  , the ratio of y to x for the ith unit, 

i

N

i
N r

N
r 




1

 
1

 , the simple arithmetic mean of the ratio for all the units in the population, 





n

i
in r

n
r

1

1
 , the simple arithmetic mean of the ratios for all the units in the sample, 

X

Y

X

Y
R

N

N
N  , the ratio of the population mean of y to the population mean of x, and 







 n

i
i

n

i
i

n

n
n

x

y

x

y
R

1

1 =  ,the corresponding ratio for the sample.   

With this, an estimator of the population mean NY  is given by  

n
R n N N

n

y
y R X X

x
  . 

This estimator is known as the ratio-type estimator and pre-supposes the knowledge of 

NX . Here, nR  provide an estimator of the population ratio NR .  For example, if y is the 

number of bullocks on a holding and x its area in acres, the ratio nR  is an estimator of the 

number of bullocks per acre of holding in the population. The product of nR   with NX


, 

the average size of a holding in acres would provide an estimator of NY


, the average 

number of bullocks per holding in the population. 

2.1 Expected Value of the Ratio Estimator  

Note that nR  is a biased estimator of NR  and the bias in nR  is given by 

Bias in nR  = 
N

nn

x

xRCov ),( 
. 

Expected value of the ratio estimator to the first approximation is given by 

)(1 RyE 



 


) )(( + 1 2

xyxN CCC
Nn

nN
y  , 

where, 
N

x
x X

S
C  , 

N

y
y Y

S
C  and   = population correlation coefficient between x and y. 

It may be noted here that the bias to the first approximation vanishes when the regression 
of y on x is a straight line passing through the origin. 
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2.2 Variance of the Ratio Estimator 

The variance of the ratio estimator to a first approximation is given by 

  2 2 2
1 y =  ( )(  - 2  C )n N y x x

N n
V R R C C C

Nn


 , 

and the variance of the ratio estimator of population mean to a first approximation is 
given by 

)(1 RyV  =  yxN SR
Nn

nN
2S R + S  2

x 
2
N

2
y 


  . 

2.3 Estimator of the Variance of the Ratio Estimator  

A consistent estimator of the relative variance of a ratio estimator is given by 
2 2

1 2 2

2ˆ  =   -  y yxn x

N n n n n

s sR sN n
V

R Nn y x y x

   
   

   
 

and the estimator of variance of the ratio estimator of population mean to a first 
approximation is given by 

2 2 2

1 y  
ˆ ( )  s  + 2R n x n yx

N n
V y R s R s

Nn

           

where 2 2

 ,  and y x yxs s s are the corresponding sample values. 

2.4 Efficiency of the Ratio Estimator 

In large samples, the ratio estimator will be more efficient than the corresponding sample 
estimator based on the simple arithmetic mean if  

2
1>  

x

y

C

C
      or    

y

x

C

C

2

1
>  . 

If yx CC  , as may be expected, for example, when y and x denote values of the same 

variate, in two consecutive periods,  will be larger than one-half in order that the ratio 
estimator may be more efficient than the one based on the simple arithmetic mean. 

 

3. Ratio Estimator in Stratified Sampling 

Let there be K stratum in the population. Let Nt denotes the number of units in the tth 
stratum and tn  the size of the sample to be selected there from, so that 

1 1

and
K K

t t
t t

N N n n
 

   . 

Denote by 
tnR the estimate of the population ratio 

ttt NNN XYR / and by Rty the ratio 

estimate of the population mean 
tNY for the tth stratum. Then clearly, the ratio estimator of 

the population mean 
tN

i

t
N Y

N

N
Y 




1

 has been discussed in the next section. 
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3.1 Separate Ratio Estimator )( Rsy  

1 1

 
t t

K K
t

Rs R t R
t t

N
y y p y

N 

   ,  where ).,...,1( Kt
N

N
p t

t   

This is a biased but consistent estimator of population mean NY . The bias to the first 

approximation is given by 

Bias in )( Rsy = ))(()( 2

1
1 tytxttx

K

t tt

tt
NtNRs CCC

nN

nN
YpYyE

t


 


, 

where  
t

tx
tx

N

S
C

X
  and 

t

ty
ty

N

S
C

Y
 . The variance of yRS

 to a first approximation is given by 

   txyNtxNty
tt

K

t
tRs SRSRS

Nn
pyV

tt
2

11 222

1

2
1 








 



, 

)(1 RsyV  t

K

t

p
N 1

1
  )2)(( 222

txyNtxNty
t

tt SRSRS
n

nN
tt




, 

)(1 RsyV  t

K

t

p
N 1

1
  )2)(( 222

tytxtNtxNty
t

tt SSRSRS
n

nN
tt



. 

The above formula is based on the assumption that tn  is large.  A consistent estimator of 

 RsyV1  is given by 

   2 2 2

1
1

1ˆ ( )( 2 )
K

t t
Rs t ty n tx n tyxt t

t t

N n
V y p s R s R s

N n


   . 

In practice, the assumption that nt is large is not always true. To get over this difficulty, a 
combined ratio estimator has been suggested as below: 

3.2 Combined Ratio Estimator )( Rcy  

NK

t
t

K

t
t

X
p

p
y

Rc

t

t

n
1

n
1

x 

y 







 . 

This is again a biased estimator, however, it is a consistent estimator. The relative bias to 
the first approximation is given by 

Relative Bias in )( Rcy = 2 2

1
1

(( ( ) ) / ( )( )
K

t t
Rc N N t tx t tx ty

t t t

N n
E y Y Y p C ρC C

N n


   . 

The variance of Rcy to a first approximation is given by 

   2 2 2

1
1

1
( ) ( 2 )

K
t t

Rc t ty N tx N t ty tx
t t

N n
V y p S R S R ρ S S

N n


   , 
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and an estimator of the variance is given by 

)s 2( 
1

)(ˆ 222

1
1 tyxntxnty

t

tt
K

t
tRc RsRs

n

nN
p

N
yV 


 



, 

where,     Rnt  = 
t

t

n

n

x

y
    and   Rn  = 

t

t

nt

K

t

nt

K

t

xp

yp









1

1  

4. Regression Method of Estimation  

We have seen that the ratio estimate provides on efficient estimate of the population mean 
if the regression of y, the variable under study, on x, the auxiliary variable is linear and 
the regression line passes through the origin. It happens frequently that even though the 
regression of y on x is linear, the regression line does not pass through the origin. Under 
such conditions, it is more appropriate to use the regression method of estimation rather 
than ratio method of estimation. 

4.1 Simple Regression Estimate 

Since the regression coefficient   is generally not known, the usual practice is to use 
estimate 

2
ˆ xy

x

s
β

s
 ,  

where   xys = ))((
1

1
nini

n

yyxx
n


    and   2

xs = 2)(
1

1
ni

n

xx
n


   giving the simple 

regression estimate, 

)(ˆ
nNnlr xxyy   . 

Note:  The general form of the estimator is )Xk( + y =ˆ
N nxY  . 

(i) If k = ˆˆ ˆ, then ( )n N nβ Y y β X x    i.e. Ŷ  is regression estimator 

(ii) If k =    

ˆ then     -  = n n
n N n N

n n

y yy
Y y X x X

x x x
   i.e. Y  is a ratio estimator. 

4.2 Expected Value of the Simple Regression Estimator 

 E ),ˆ(y = )( N nlr xCovy   

showing that the simple regression estimate is biased by an amount - ),ˆ( nxCov  . 

4.3 Variance of the Simple Regression Estimate 

To a first approximation, 

 )1(S )
1

n

1
( =~ )( 22

y 
N

yV lr  

where   is the correlation coefficient between y and x in the population. 
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4.4 Estimator of the Variance 

 )1(s )
1

n

1
( = )(ˆ 22

y r
N

yV lr   

where r = 
yx

xy

ss

s
 is the sample correlation coefficient. 

5. Regression Estimators in Stratified Sampling 

At first, we shall consider two difference estimates, namely  

(i) Separate difference estimator  

(ii)  Combined difference estimate 

5.1 Separate Regression Estimate 

When si ,  are not known in case of separate difference estimator, we estimate these 

from the sample and in that case the estimator is known as separate regression estimator.  

 



K

i
nNinilrs iii

xxypy
1

)(̂       where    
2

ˆ
ix

ixy
i s

s
  

This estimator is biased and the variance of the estimator to the first approximation, is 
given by 

V )1()
11

()( 222

1
iiy

ii
i

K

i
lrs S

Nn
py  



 

where   i   is the correlation coefficient between y and x for the i-th stratum and 

)ˆ2ˆ)(
11

()( ˆ 2222

1
ixyiixiiy

ii
i

K

i
lrs sss

Nn
pyV  



 

5.2 Combined Regression Estimator 

When the pooled regression coefficient    is not known then we replace it by    and get 
the combined regression estimator, 

 
 


K

i

K

i
niNnilrc ii

xpXypy
1 1

)(̂ , 

where  
2

1

2

1

2

)
11

(

)
11

(
ˆ

ix
ii

K

i
i

K

i
ixy

ii
i

s
Nn

p

s
Nn

p












 . 

The variance of the estimator along with its estimator, to the first approximation are given 
by 

)2)(
11

()( 2

1

222
ixyix

K

i
iy

ii
ilrc SSS

Nn
pyV  



, 
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and   )ˆ2ˆ)(
11

()(ˆ 2

1

222
ixyix

K

i
iy

ii
ilrc sss

Nn
pyV  



. 

 

6. Practical Examples 

Let ),...,1( Niyi  be the variate under study, and ),...,1( Nixi  be the auxiliary variate. 

Let N be the population size out of which a sample of size n is drawn. Let NX  be the 

population total of the auxiliary variate. 

STEP-I:   Calculate: 


n

i
iy

1

 ,   


n

i
ix

1

 ,    


n

i
iy

1

2 ,   


n

i
ix

1

2  and  i

n

i
i yx

1

 . 

STEP-II:  Calculate:    

 s 2

y = 
1

( 1)n 
 2

2 i

i

y
y

n

 
 

  

  

  2

2 21

( 1)
i

x i

x
s x

n n

 
  

   

  

xys = 
)1(

1

n
 

  











 

n

yx
yx ii

ii  

 
2
x

xy

s

s
b     

yx

xy

ss

s
r

.
  

 ny =  iy
n

1
   nx =  ix

n

1
  

 
n

n
n x

y
R     X  = 

N

X N  

STEP-III: Calculate: 

(a) Ratio estimate . 

      Ry = 
n

n

x

y
NX . 

       Estimate of its variance   

       )( RyV


 = 
1 1

n N
  
 

  xynxny sRsRs 2222  .  

(b) Regression estimate )( lry  

     lry  =  nNn xXby  . 
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Estimate of its variance    

      )( lryV


) =     22222 1
11

2
11

yxyxy sr
Nn

bssbs
Nn











 






    

(c) Simple Mean estimate .   

      nsrs yy   . 

      Estimate of its variance . 

      )( SRSyV


= 211
ys

Nn






  . 

STEP-IV:  Calculate Estimate of Relative Efficiency  

 (a) Estimate of Relative Efficiency of Ratio estimate over Simple Mean estimate 

=  
 
 R

SRS

yV

yV
ˆ

ˆ
x 100 

(b) Estimate of Relative Efficiency of Regression estimate over Simple Mean estimate 

       =  
 
 lr

SRS

yV

yV
ˆ

ˆ
 x100 

(c) Estimate of Relative Efficiency of Regression estimate over Ratio estimate 

             =   
 
 lr

R

yV

yV
ˆ

ˆ
 x 100 

Note: Estimate of Standard Error (SE) of the estimate can be worked out by taking square 
root of the corresponding value of the estimate of the variance. 

 

Practical Exercise 1 

A sample survey for the study of yield and cultivation practices of guava was conducted 
in Allahabad district. Out of a total of 146 guava growing villages in Phulpur-Saran tehsil, 
13 villages were selected by method of simple random sampling. The Table below 
presents total number of guava trees and area under guava orchards for the selecte 13 
villages. It is also given that the total area under guava orchards of 146 villages is 354.78 
acres.  

Using area under guava orchards as auxiliary variate, estimate the total number of guava 
trees in the tehsil along with its standard error, by using  

(i)  Ratio method of estimation, and 

(ii)  Regression method of estimation.  

(iii)      Discuss the efficiency of these estimates with the one which does not   make 
use of the information on the auxiliary variate. 
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Sl. No. of 
Village 

Total number of guava trees 
)( iy  

Area under guava orchards (in 
acres) )( ix  

1. 492 4.80 
2. 1008 5.99 
3. 714 4.27 
4. 1265 8.43 
5. 1889 14.39 
6. 784 6.53 
7. 294 1.88 
8. 798 6.35 
9. 780 6.58 

10. 619 9.18 
11. 403 2.00 
12. 467 2.20 
13. 197 1.00 

SOLUTION: 




n

i
iy

1

= 9710,   


n

i
ix

1

= 73.60,   


n

i
iy

1

2 = 9685234,   


n

i
ix

1

2 = 579.20,   




n

i
ii yx

1

= 72879.72 ,  2
ys = 202717.60,   2

xs = 13.54,   xys = 1492.18,  b = 110.19        

 r = 0.90,   ny = 746.92,     nx = 5.66,      nR = 131.93,       NX = 2.43,   

Ry = 320.59           V̂ ( Ry ) = 3132.35            (Estimate of Standard Error = 55.97)       

lry = 390.85           V̂ ( lry ) = 2683.74            (Estimate of Standard Error = 51.80) 

ny = 746.92           V̂ ( ny ) = 14205.18         (Estimate of Standard Error = 119.19) 

 

(a) Estimate of Relative Efficiency of Ratio estimate over 
Simple Mean estimate 

453.50 

(b) Estimate of Relative Efficiency of Regression estimate 
over Simple Mean estimate 

529.31 

(c) Estimate of Relative Efficiency of Regression estimate 
over Ratio estimate 

116.72 

 

Practical Exercise 2 

A sample survey was conducted for studying milk yield, feeding and management 
practices of cattle and buffaloes in the eastern districts of U.P. The whole of the eastern 
districts of U.P. were divided into four Zones (strata). The Table below present total 
number of milch cows in 17 randomly selected villages of Zone-I as enumerated in winter 
season and as per Livestock Census. 
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Sl. No. of Village Number of Milch Cows 
Winter Season )( iy  Livestock Census )( ix  

1. 29 41 
2. 44 44 
3. 25 27 
4. 38 53 
5. 37 17 
6. 27 40 
7. 63 53 
8. 53 46 
9. 64 89 

10. 30 37 
11. 53 70 
12. 25 15 
13. 16 30 
14. 15 18 
15. 12 22 
16. 12 13 
17. 23 66 

Estimate the number of milch cows per village with its standard error for the rural area of 
Zone-I in winter season by using (i) Ratio method of estimation, and  
(ii) Regression method of estimation. It is given that total number of milch cows in  
Zone-I as per Livestock Census was 10,87,004 and number of villages in Zone-I was 
22,654. Also compare the efficiency of these estimates with Simple Mean estimate.  

SOLUTION: 




n

i
iy

1

= 566,    


n

i
ix

1

= 681,   


n

i
iy

1

2 = 23450,      


n

i
ix

1

2 = 34617,     


n

i
ii yx

1

= 26879 

 
2
ys = 287.85 ,   2

xs = 458.56,    xys = 262.86,     b = 0.57,    r = 0.72  

ny = 33.29,    nx = 40.06,  nR = 0.83,   NX = 47.98 

Rŷ = 39.88     V̂ ( Rŷ ) = 9.86       14.3RySE  (Estimate of Standard Error = 3.14)       

lrŷ = 37.84           V̂ ( lrŷ ) = 8.06           (Estimate of Standard Error = 2.84) 

nŷ = 33.29               V̂ ( nŷ ) = 16.92      (Estimate of Standard Error = 4.11) 

(a) Estimate of Relative Efficiency of Ratio estimate over Simple Mean 
estimate 

171.67 

(b) Estimate of Relative Efficiency of Regression estimate over Simple 
Mean estimate 

 209.85 

(c) Estimate of Relative Efficiency of Regression estimate over Ratio 
estimate 

122.24 
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Practical Exercise 3 

A pilot sample survey for estimating the extent of cultivation and production of fresh 
fruits was conducted in three districts of Uttar Pradesh State during the agricultural year 
1976-77. The following data were collected 

Stratum 
Number 

Total 
number 

of 
villages  
( mN ) 

Total 
area  

under 
orchards 

(ha.) 
(X m ) 

Number 
of 

villages 
in 

Sample
(n m ) 

Area under orchards  
(ha.) 
(x m ) 

Total number of trees 
(y m ) 

1 985 11253 6 10.63 9.90 1.45 747 719 78 
3.38 5.17 10.35 201 311 448 

2 2196 25115 8 14.66 2.61 4.35 580 103 316 
9.87 2.42 5.60 739 196 235 
4.70 36.75  212 1646  

3 1020 18870 11 11.60 5.29 7.94 488 227 374 
7.29 8.00 1.20 491 499 50 

11.50 1.70 2.01 455 47 879 
7.96 23.15  115 115  

Estimate the total number of trees in the three districts by different methods and compare their 
precision.  

SOLUTION 

The calculations have been shown in the Table given below: 

Str
atu
m 

W m  










mm Nn

11

 

mx  my  
mR̂

 

W m mx W m my 2
xm

s  2
ym

s  
mxys  

1 0.2345 0.16598 6.81 417.33 61.28 1.60 97.66 16.03 74778.80 1008.75
2 0.5227 0.12454 10.07 503.38 49.99 5.26 263.12 129.64 259107.98 5643.81
3 0.2428 0.08902 7.97 340.00 42.66 1.94 82.55 38.39 65885.60 1403.69

           W m =  mm NN   , mR̂ = mm xy                               

 

(A) Ratio Estimators 

(i) Separate Ratio Estimate  ( Rsy ) 

Rsy    =  m

K

m
m XR

1


=  2750077   

Estimate of its variance )( RsyV


             

 RsyV


= 









mm
m Nn

N
112  

mmm xymxmy sRsRs .ˆ.2.ˆ 222  = 2441137855.48 
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(ii) Combine Ratio Estimate ( Rcy ) 

Rcy = X
xW

yW

mm

mm

∑

∑
 = (2783995)     

Estimate of its variance )( RcyV


                   

 RcyV


= 2
mN  

mmm xyxy
mm

sRsRs
Nn

.ˆ.2.ˆ11 22 







                       

where   =R̂  mmmm xWyW  

(iii) Efficiency of Separate Ratio Estimate ( Rsy ) over the Combined Ratio Estimate ( Rcy ) 

Estimate of Relative Precision Efficiency (R.P.)=
 
 Rs

Rc

yV

yV


x 100   (246.58%)                                          

(B) Regression estimators 

(i)  Separate Regression Estimate ( lsy ) 

    
K

m
mmmmmls xXbyNy  = 2672911    

 Estimate of its variance )( lsyV


    

     









K

m
xmy

mm
mls mm

sbs
Nn

NyV 2222 .
11

 =  1870633332                                    

 (ii)  Combine Regression Estimate    lcy  

lcy = N   stcst xXby   where 

  

 








K

m

n

j
mmj

K

m

n

j
mmjmmj

c m

m

xx

xxyy

b
2

 = 2643949 

 
K

m
mmst yNy    and    

K

m
mmst xNx  

Estimate of its variance )( lcyV


    

  lcyV
  

        


K

m

n

j
mmjcmmj

mm

mm
m

xxbyy
nn

fW 2
2

1

1
= 2020917640    where

m

m
m N

n
f    

a) Estimate of Efficiency of Separate Regression Estimate  lsy  over the Separate  

Ratio Estimate  Rsy  is given by 

Relative Precision (R.P.) =  
 
 ls

Rs

yV

yV


 . 100 = 130.50% 
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b) Estimate of Efficiency of Combine Regression Estimate ( lcy ) over the Combined 

Ratio Estimate ( Rcy ) is given by 

Relative Precision (R.P.) =  
 
 lc

Rc

yV

yV


 . 100 =  297.86% 

c) Estimate of Efficiency of Separate Regression Estimate ( lsy ) over the Combined 

Regression Estimate ( lcy ) is given by 

Relative Precision (R.P.) =  
 
 ls

lc

yV

yV


 . 100 = 108.03% 
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1. Introduction 

In survey studies, once data are collected, the most important objective of a statistical 
analysis is to draw inferences about the population using sample information. "How big a 
sample is required?" is one of the most frequently asked questions by the investigators. If 
the sample size is not taken properly, conclusions drawn from the investigation may not 
reflect the real situation for the whole population. Obtaining a representative sample size 
remains critical to survey researchers because of its implication for cost, time and 
precision of the sample estimate. The survey statistician has to be careful while choosing 
the sample size, because too large a sample implies waste of resources (time and cost), 
and too small a sample reduces the utility of the result inferences. However, the difficulty 
of obtaining a good estimate of population variance coupled with insufficient skills in 
sampling theory impede the researchers’ ability to obtain an optimum sample in survey 
research. Use of efficient sampling plan enable an optimum utilization of budgetary 
resources to provide the best estimators (Highest efficiency) of the population parameters. 
As is well known, efficiency of an estimator is measured by inverse of mean square error 
(or variance in case of unbiased estimators). Therefore, target is to minimize both cost as 
well as variance, simultaneously. But, unfortunately, it is not possible as there is a trade-
off between cost of survey and variance of estimator. With an increase in the sample size, 
increases the cost of the survey while the variance decreases, that means improvement in 
efficiency. Hence, it is very important to determine appropriate sample size, to maintain a 
balance which is reasonable with respect to cost as well as efficiency. Survey sampling 
theory provides a framework within which the problem of determining sample size may 
be tackled reasonably, see for example, Cochran (1977), Singh and Chaudhury (1985), 
Field (2005) etc. 

One of the key challenges that researchers face in survey research is the determination of 
appropriate sample size which is representative of the population under study. This is to 
ensure that findings generalized from the sample drawn back to the population are with 
limits of random error. It is impossible to make accurate inferences about the population 
when a test sample does not truly represent the population from which it is drawn due to 
sample bias. Statistical inference regarding population characteristics using the sample 
data generally adopts one of the two methods, namely, the estimation of population 
parameters or testing of a hypothesis. The process of obtaining an estimate of the 
unknown value of a parameter by a statistic is known as estimation. There are two types 
of estimations viz. point estimation and interval estimation. Again, when we draw 
inference about parameter from statistic, some kind of error arises. The error which arises 
due to only a sample being used to estimate the population parameters is termed as 
sampling error or sampling fluctuations. Whatever may be the degree of cautiousness in 
selecting sample, there will always be a difference between the parameter and its 
corresponding estimate. A sample with the smallest sampling error will always be 
considered a good representative of the population. Bigger samples have lesser sampling 
errors. When the sample survey becomes the census survey, the sampling error becomes 
zero. On the other hand, smaller samples may be easier to manage and have less non-
sampling error. Handling of bigger samples is more expensive than smaller ones. The 
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non-sampling error increases with the increase in sample size. The computation of the 
appropriate sample size is generally considered to be one of the most important steps in 
statistical study. But, it is observed that in most of the studies this particular step has been 
overlooked. The sample size computation must be done appropriately because if the 
sample size is not appropriate for a particular study then the inference drawn from the 
sample will not be authentic and it might lead to some wrong conclusions. 

 

2. Criteria of determining sample size 

a) Level of Precision: 

Sample size is to be determined according to some pre assigned ‘degree of precision’ or 
permissible margin of error between the estimated value and the population value. In 
other words, the level of precision may be also termed as sampling error. According to 
W.G. Cochran (1977), precision desired may be made by giving the amount of errors that 
are willing to tolerate in the sample estimates. It depends on the amount of risk a 
researcher is willing to accept while using the data to make decisions. It is often 
expressed in percentage. Thus, if a researcher finds that 60% of farmers in the sample 
have adopted a recommended practice with a precision rate of ±5%, then he or she can 
conclude that between 55% and 65% of farmers in the population have adopted the 
practice. High level of precision requires larger sample sizes and higher cost to achieve 
those samples. 

b) Confidence level desired: 

The confidence or risk level is based on ideas encompassed under the Central Limit 
Theorem. The key idea encompassed in the Central Limit Theorem is that when a 
population is repeatedly sampled, the average value of the attribute obtained by those 
samples is equal to the true population value. Furthermore, the values obtained by these 
samples are distributed normally about the true value, with some samples having a higher 
value and some obtaining a lower score than the true population value. In a normal 
distribution, approximately 95% of the sample values are within two standard deviations 
of the true population value (e.g., mean). While calculating the sample size, the desired 
confidence level is specified by the z value. The z-value is a point along the abscissa of 
the standard normal distribution. For example, 1.96 and 2.58 for 95% and 99% 
confidence level. In other words, this means that, if a 95% confidence level is selected, 
95 out of 100 samples will have the true population value within the range of precision 
specified earlier. There is always a chance that the sample you obtain does not represent 
the true population value. 

c) Degree of variability: 

The degree of variability in the attributes being measured refers to the distribution of 
attributes in the population. The more heterogeneous a population, the larger the sample 
size required to be, to obtain a given level of precision. For less variable (more 
homogeneous) population, smaller sample sizes works nicely. Note that a proportion of 
50% indicates a greater level of variability than that of 20% or 80%. This is because 20% 
and 80% indicate that a large majority do not or do, respectively, have the attribute of 
interest. Because a proportion of 0.5 indicates the maximum variability in a population, it 
is often used in determining a more conservative sample size. 
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3. Principal Steps in Determination of Sample Size  

 Choice of desired confidence level depending upon tolerance limit (depends on 
type of study and resources available).  

 Some equation should be found that connects n with the desired precision of the 
sample. 

 This equation solution depends upon one or more, parameters, (contain unknown 
properties of the population), must be estimated or achieved from prior 
knowledge. 

 In case of sample size determination many a time multiple characteristics are 
available. The desired degree of precision is prescribed for each characteristic can 
produce conflicting values of n. Hence, some method must be developed to 
reconcile these values.  

Finally, the calculated n must be appraised with the practical scenario available i.e. is n 
consistent with the resources (cost, labour, time and material required) available to take 
the sample. Many a time, situation arises to reduce the n drastically. Decision has to make 
either to go with a much smaller sample size, that reducing precision, or to wait until 
required resources. Regarding the choice of a level for tolerable margin of error and the 
confidence level, the user normally has only a vague idea and these measures are mainly 
subjective and depend largely on the judgment of the user regarding the importance, 
applicability and vulnerability of the results. 

 

4. Determining the sample size 

Regarding the sample sizes in case of simple random sampling, the cases for qualitative 
and quantitative data are presented below: 

Taro Yamane (1967) formula:  

 21 eN

N
n




 

where    n =         Desired sample size  

  N = Population of the study  

  e = precision of sampling error (0.05) 

Qualitative data: 

Cochran’s formula for when the population is infinite 

Cochran (1977) proposed a formula to calculate the sample size based on the sample 
required to estimate a proportion with an approximate  1 100%z   confidence level. 

The units are classified into two classes, C and CSome margin of error d in the 
estimated proportion p of units in class C has been agreed on, and there is a small risk α,  

probability that the actual error is larger than d; i.e.,  Pr .p P d    Simple random 

sampling is assumed, and p (proportion of the population having the characteristic) is 

taken as normally distributed. Hence, the standard deviation is 
(1 )

.
1p

N n P P

N n
      

Hence the formula that connects n with the desired degree of precision is 
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(1 )

1

N n P P
d z

N n

     
, where z is the abscissa of the normal curve that cuts off an area 

of at the tails or selected critical value of desired confidence level. Solving for n, get the 

formula  
2 2

2 2

(1 ) 1 (1 )
1 1r

z P P z P P
n

d N d

   
    

  
where nr = required sample size. For 

practical use, an advance estimate p of P is substituted in this formula. If N is large, a first 

approximation is
2

2

(1 ) (1 )
r

z p p p p
n

d V

 
  , where, 

(1 )

r

p p
V

n


 is desired variance of 

the sample proportion. The proportion of the population (p) may be known from prior 
research or other sources; if it is unknown use p = 0.5 which assumes maximum 
heterogeneity (i.e. a 50/50 split). For example, suppose we want to calculate a sample size 
of a large population whose degree of variability is not known. Assuming the maximum 
variability, which is equal to 50% (p =0.5) and taking 95% confidence level with ±5% 
precision, the calculation for required sample size will be as follows: 

p = 0.5 and hence q =1-0.5 = 0.5; d= 0.05; z =1.96. 

 22

2 2

1.96 0.5 0.5
384.16 384

(0.05)r

z pq
n

d

 
    , So the minimum sample size would be 

384. 

Again, taking 99% confidence level with ±5% precision, the calculation for required 
sample size will be as follows: p = 0.5 and hence q =1-0.5 = 0.5; e = 0.05; z =2.58. 

So, 
 2

2

2.58 0.5 0.5
665.64 666

(0.05)rn
 

    

Table1: Each cell represents required sample size for different confidence level and 
precision. 

Confidence level Desired margin of error 

d=0.03 d=0.05 d=0.1 

95% 1067 384 96 

99% 1849 666 166 

 

Cochran’s formula for when the population is finite 

First calculate nr using the previous section formula. Then find rn N value, if it is 

negligible (approx. less than 5 percent), nr is a final calculated sample size. If not, the use 

the formula 0n   
( 1) 1 /1

r r

r r

n n
n n N

N


 

, no is the ultimate sample size. Now, suppose N 

=13191, nr=666 at 99% confidence level with margin of error equal to (0.05). 5%rn N   
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not negligible, hence sample size is 0

666
634.03 634.

(666 1)
1

13191

n   



But, if the sample 

size is calculated at 95% confidence level with margin of error equal to (0.05), the sample 
size become 384 i.e. 5%,rn N   which does not need correction formula. So, in this case 

the representative sample size for our study is 384. 

Quantitative data: Cochran’s formula for calculating sample size when the population 
is infinite 

A drawback with this formula is the need to know the population standard deviation. This 
may be known from prior research; if a good estimate is unavailable the formula will not 
be reliable.  

Further, sample size determination using relative error in the estimated population total or 
mean as 

 Pr Pr Pr
y Y Ny NY

r r y Y rY
Y NY


    

         
   

 

Where, r be the relative error in the estimated population total or mean, y  be the sample 

mean estimates, Y be population mean and α is a small probability. Standard error of y is 

 
.y

N n S

N n



 Hence, 

 
y

N n S
rY z z

N n



  and Solving for n gives rn 

 

22 2

2

11
1

SzS zS
rY N rY YCV

                    
. 

Note that the population characteristic on which nr depends is its coefficient of variation 
(CV) and /S Y .  

If the interest is to control the absolute error instead of relative error formula specified as  

2 2

2r

z
n

d


  Where nr= required sample size, σ = the population standard deviation and d = 

the degree of precision required.  For example, If investigation is done on the average 
(mean) level of employee satisfaction in Government offices and want to know the 
required sample size. You decide on a 95% confidence level. Prior studies have reported a 
standard deviation (σ) of 1.5 so you decide to use the same figure in your estimate. 
Satisfaction will be measured on a 10-point scale and you set a margin of error of ±0.25 
units. To determine the minimum sample size you then apply the formula: 

   2 2

2

1.96 1.5
144.

0.25rn


   So your minimum sample size would be 144. When 

population size is finite i.e. sample represents a significant (e.g. over 5%) proportion of 
the population, a finite population correction factor can be applied. This will reduce the 

sample size required. The formula for this is: 0 ( 1)
1

r

r

n
n

n
N





, where n0= the adjusted 

sample size, nr= the original required sample size and N = population size. For example, 
calculated sample size (nr= 144) for the employee satisfaction survey in the previous 
example, you decide to apply a finite population correction factor because the total 
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number of employees is only 650 (N = 650). To determine the adjusted sample size you 
apply the following formula. 

144 144
118.

( 1) (144 1) 1.2211
650

r
a

r

n
n

n
N

   
 


 So your adjusted minimum sample size 

would be 118. 

Sometimes the specification error to be tolerated is only given in terms of desired per cent 
S.E. of the estimator e.g. the estimate is desired with a maximum of say 5 % S.E.  In such 
cases, n is obtained from the corresponding formulae. In simple random sampling, if the 

desired % S.E.  is  d,  then  n is given by 0 2

2

1
.

1
n

d
N C


 

 
 

 

Illustration of determination of sample size with practical example (Cochran, 1977) 

The example is “An Anthropologist is preparing to study the inhabitants of some island. 
Among other things, he wishes to estimate the percentage of inhabitants belonging to 
blood group O. Co-operation has been secured so that it is feasible to take a simple 
random sample. How large should the sample be?” This is just a typical example. In fact, 
in almost all the sampling investigations, one has to face such problems. An answer to the 
question is not straight forward. First of all, one must be very clear about the objective of 
the study. Or at least, the user must know to what use their results are going to be put, so 
that he should be able to answer as to what is the margin of error he is going to tolerate in 
the results. In the above example, the Anthropologist should be able to answer as to how 
accurately does he wish to know the percentage of people with blood group O? In this 
case he is reported to be content with a 5% margin in the sense that if the sample shows 
43% to have blood group O, the percentage for the whole island is sure to be between 38 
and 48. Since a random sampling procedure has been used, every sample has got some 
chance of selection and the possibility of getting the estimates lying outside the above 
specified range cannot be ruled out. Aware of this fact, the Anthropologist is prepared to 
take a 1 in 20 chance of getting an unlucky sample with the estimate lying outside the 
above margin.  

With the above information, ignoring fpc and assuming that the sample proportion p is 
assumed to be normally distributed, a rough estimate of n may be obtained. In technical 
terms, p is to lie in the range  5P  , except for a 1 in 20 chance. Since p is assumed to 

be normally distributed about the population proportion P, it will lie in the range 

 2 pP  apart from a 1 in 20 chance (in 95% cases). Further, since the standard error of 

p is approximately given by p

PQ

n
  ,where Q=1-P. Using confidence interval formula, 

approximately get 2 5.p  Hence 
4

.
25

PQ
n   At this point a difficulty appears that is 

common to all problems in the estimation of sample size. A formula for n has been 
obtained, but n depends on some property of the population that is to be sampled. Here, it 
is the quantity P that we would like to measure. They therefore ask the anthropologist if 
he can give us some idea of the likely value of P. He replied that from previous data on 
other ethnic groups, and from his speculations about the racial history of this island, he 
will be surprised if P lies outside the range 30 to 60%. This information is sufficient to 
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provide a usable answer. For any value of P between 30 and 60, the product P.Q lies 
between 2100 and a maximum of 2500 at P = 50. The corresponding n lies between 336 
and 400. To be on the safe side, 400 is taken as the initial estimate of n. 

In the hypothetical blood groups example, we had d = 0.05, p = 0.5, α= 0.05, z = 2 . 

Thus, 

0

4 0.5 0.5
400

0.0025
n

 
  . 

Let us assume that there are only 3200 people on the island. The fpc is needed, and we 
find 

0

0

40
356

1 ( 1) / 1 399 / 3200

n
n

n N
  

  
. 

The formula for n0holds also if d, p and q are all expressed as percentages instead of 
proportions. Since the product pq Increases as p moves towards 1/2, or 50%, a 
conservative estimate of n is obtained by choosing for p the value nearest to 1/2 in the 
range in which p is thought likely to lie. If p seems likely to lie between 5 and 9 %, for 
instance, we assume 9 % for the estimation of n. 

 

5. Overall Sample Size  

If a pilot survey is undertaken for testing questions and survey procedure before the main 
survey is launched, it may be possible to estimate roughly the parameters (For example, 
population mean, variance) required for the determination of sample size for the various 
items of interest. However, in practice pilot survey may not be always possible since, it 
requires advance budget prior to the main survey. Thus the determination of the sample 
size in most cases may have to be done in advance either by making reasonable guesses 
of the different parameters or prior information from different sources (For example, 
administrative or census sources). 

In stratified multi-stage random sampling design is used, information is required not 
merely on the population mean and standard deviation (SD), but also its components of 
variance between primary stage sampling units (PSUs) and within PSUs. In such 
circumstances statistician have to proceed by finding sample sizes in stages, required for a 
simple random sample (SRS) and to make adjustments to the overall sample size the 
design effects of multi-stage sampling are taken into consideration 

Generally, the level of precision desired of an estimate is expressed as a percentage of 
itself or, strictly speaking of the population parameter. Let Y be the characteristic under 
study, Y  be the population mean and y  be the sample mean. The required sampling 
precision is prescribed as a percentage of y . For example, sampling precision of y  

should be %  of y  i.e., the population average should lie in between
100

y
y

 
 and 

100

y
y

 
 .Taking 95% confidence interval (CI), the margin of error  2SE y  equalizes to 

100

y 
and that produce, 

 
100 % Relative

2

SE y
SE

y


   . Now, Putting the value of 

 SE y  under simple random sampling (SRS) ultimately produce,  
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2

2

( )
40000

CV
n


  , where, 

Stndard Deviation ( )
Coefficient of variation

Population Mean ( )
CV

Y


  . For 

example, If, α=5, then 
2( )

40000
25

CV
n   .Thus to sample sizes determination require the 

value of CV which can be estimated using prior information from different data sources. 
Coefficient of variation, generally being a stable quantity can also be approximated using 
some related information.  For example, average household income can be taken to be 
equal to per capita income x average household size and 1/6 of the known range of 
household income can be taken as an approximation of the SD on the assumption of a 
normal distribution.  However, a better assumption is that of log-normal distribution, i.e. 
instead of assuming y to be distributed normally, assume that loge y  is distributed 

normally. 

Let us assume that  loge y  is distributed normally with mean ‘a’ and standard deviation 

‘b’, then Mean= 

2

2

b
a

e


, variance= 
2 22 1a b be e  , 2(CV) =

2 1be  , median= ae , mode= 
2a be  . 

Hence, 
2

2Mean Median
b

e and 
23

2Mean Mode
b

e . 

Thus if mean is approximated and the median or mode is roughly guessed, it is possible to 
calculate the value of ‘b’ and therefore, approximate C.V. It may also be noted that an 
error in the estimate of mode affects the estimate of ‘b’ less than the same relative error in 
the estimate of the median. Also it may be perhaps less difficult to make a good guess of 
the mode than median. Further, log normal distribution has the property that the 
proportion of population with values less than or equal to the mean is given by P(b/2), 
where P(t) is the area to the left of ‘t’ of a standard normal probability density function. 
Thus if we guess the proportion of households whose income is less than or equal to the 
average, it is possible to obtain the value of ‘b’ by referring to the corresponding 
proportion in the standard normal distribution tables and thus arrive at an estimate of CV. 
Now discussion will be made regarding a simple method that does not depend upon the 
estimation of either the population mean or the standard deviation, but assumes log-
normal distribution. Take the case of estimation of household income. Based on empirical 
data collected from a large number of countries, it is reported in a technical study on 
Household Income and Expenditure Surveys (Published in 1989 by Statistics Office of 
the United Nations under National Household Survey Capability Programme) that nearly 
two-thirds of the population in the case of distribution of income or similar economic 
variables lie below the average value. Thus with the property mentioned in above gives 

1.0492 1.CV   It is not claimed that the observation mentioned above is universal. If 
the proportion between the average is different, CV will be different as given below: 

Table 2: Table 5 (pp180-187) of the UN publication mentioned above gives the value of 
CV and the proportion of households below the average for some 54 countries. 

Percentage of population below average C.V. 
55 0.2554 
60 0.5409 
65 0.9005 
70 1.4157 
75 2.2739 
80 4.0000 
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It would be seen that as the percentage of population below the average changes, the 
value of CV changes very fast. Thus, rather than working with the assumed proportion of 
two-thirds, one may prefer to err on the safe side and take the proportion as 70% and use 

21.4157 1.42or (CV) 2CV    . Table 2 shows that only few cases CV exceeded 1.42. 

Thus the assumption of 2(CV) 2 is not unrealistic. If 2(CV) 2 , then find n = 3200 and 

if 2(CV) 1 , as it happens in most cases, get n = 1600. 

In the above calculations, finite population correction (fpc) factor is ignored, i.e. the 
population size is very large as compared to sample size. As a working rule, when

5%n N   fpc can be ignored.  

However, if fpc cannot be ignored, then the sample size n  for a simple random sample 

will be 
1 /

n
n

n N
 


, where n is the sample size for the case when fpc can be ignored. In 

large scale sample surveys, generally one uses a two-stage random sampling design. A 
two-stage design is generally less efficient than SRS of the same ultimate size and to 
achieve the same level of precision as in a SRS, a larger number of ultimate stage 
sampling units has to be surveyed. This is called the design effect and the extent of the 
upward adjustment to the sample size depends on the degree of similarity of second stage 
units within a PSU, which is measured by intra-class correlation coefficient. As a good 
working rule, one can take the value of 2 for the design effect as indicated in the 
Handbook of Household Surveys (Revised Edition), Studies in Methods, Series F.No.31, 
1984 of the United Nations. Using the value 2 for the design effect, find n = 6400, if 

2(CV) 2 and      n =3200, if 2(CV) 1 . Here again the sample size required would be 
less if appropriate stratification is used at various stages. 

 

6. Sample Size for Domains  

Estimates are generally required not only at the national level but also for certain domains 
such as geographical regions, rural and urban areas. One has then to work out the sample 
size for each domain and add them to arrive at the national sample size. We shall assume 
that domain-wise estimates are required with the same precision of 5%. Further, for sake 
of simplicity, we will deal with the case of two domains of study. For sake of illustration, 
let us consider a Household Income and Expenditure Survey (HIES) and rural and urban 
areas may be taken as the two domains of study. Further, let us assume that 80% of 
households (hh) are rural and 20% of the hh are urban. Suppose further that the average 
household income for the urban area is twice the national average. With the 80:20 ratios 
between rural and urban hh, it means that the average household income in the rural 
areas, is 75% of the national average. Let (CV)rural  and (CV)urban be the CV for rural and 

urban areas respectively. If 2(CV) 2 , it can be shown that  

20.45(CV)rural
20.80(CV) 1.75urban  .                    (*) 

If it assume that (CV) (CV)rural urban , then find 2(CV)rural
2(CV) 1.40urban  . Thus to 

obtain the same relative precision of 5% (i.e. relative SE of 2.5%), the sample size for 
each of two sectors will be 1.4 1600 2(design weight) 4480hh   . Hence, National 
sample size = 8960 hh. Thus the national sample size is increased by 40% from 6400 to 
8960.  If we do not have that many resources, we can divide the national sample size of 
6400 equally to rural and urban areas.  The effect of allocation of 3200 instead of 4480 hh 
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would be that, instead of 5% we shall have 5.9% precision (2.95% relative SE). It is likely 
that (CV) (CV)rural urban .  

Table 3: Sample size required with different (CV)urban and (CV)rural but satisfying the 
equation (*). 

2(CV)rural  2(CV)urban  Rural Urban Total 

1.0 1.625000 3200 5200 8400 

1.1 1.56875 3520 5020 8540 

1.2 1.515250 3840 4840 8680 

1.3 1.45625 4150 4660 8820 

1.4 1.40000 4480 4480 8960 

1.5 1.34375 4800 4300 9100 
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1. Introduction  
The procedure called double sampling or two-phase sampling is typically employed in the 
following situation. There exists a procedure, relatively cheap to implement, that produces a 
vector of observations denoted by x. The vector x is correlated with the characteristics of 
interest, where the vector of interest is denoted by y. It is very expensive to make 
determinations on y. In the most popular form of two-phase sampling, a relatively large 
sample is selected and x determined on this sample. This sample is called the 
firstphasesample or phase I sample. Determinations for the vector y are madeon a subsample 
of the original sample. The subsample is called the secondphasesample orphase 2 sample. In 
the form originally suggested by Neyman(1938), the original sample was stratified on the 
basis of x and the stratifiedestimator for y constructed using the estimated stratum sizes 
estimated withthe phase 1 sample. We first describe this particular, and important, case 
oftwo-phase sampling. We simplify the discussion by considering scalar y. Double sampling 
can be used both with ratio or regression estimation technique and stratified sampling for 
better precession.  
The general procedure for both double sampling with the ratio estimator and for double 
sampling with the regression estimator is identical. Contrary to double sampling for 
stratification where a categorical variable is observed in the first phase, it is usually metric 
variables that serve as ancillary variables when double sampling with the ratio or regression 
estimator is being used. In the first phase, a sample of size 'n' is taken to estimate the mean or 
total of the auxilliary variable X. The sample taken is usually large because measurement of 
X is cheap, fast and easy. In the second phase, a sample is selected on which both target and 
ancillary variable are observed; from these pairs of observations, a relationship between the 
two variables can be established, either a ratio or a regression. The second phase sample is 
usually small because the observation of Y is usually more expensive, difficult and time 
consuming. Then, the observations from the first phase are used to estimate the total and 
mean of the target variable for the entire area of interest. 
In both approaches, dependent or independent phases are possible and the corresponding 
estimators need to be used. It is interesting to note, that double sampling is also interesting in 
context of Sampling with partial replacement (SPR) that is a very efficient technique 
to estimate changes. 

Notations 

N Total number of samples in the entire area of interest; 
n´ Number of samples in the first phase; 
n Number of samples in the second phase; 

http://wiki.awf.forst.uni-goettingen.de/wiki/index.php/Double_sampling
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php/Ratio_estimator
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php?title=Regression_estimator&action=edit&redlink=1
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php/Estimation_on_changes#Sampling_with_partial_replacement
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php/Estimation_on_changes
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mdry  Estimated mean of target variable Y from the ratio estimator for entire area; 

mdregy  Estimated mean of target variable Y from regression estimator for entire area; 

x′  Estimated mean of ancillary variable X in the first phase: 
x  Estimated mean of ancillary variable X in the second phase; 
y  Estimated mean of target variable Y in the second phase; 

iy  i-th Observed value of target variable Y; 
r Estimated ratio of the ratio estimator 
b Estimated slope coefficient of regression estimator; 

2
ys  Estimated variance of the target variable Y; 

2
xs ′  Estimated variance of ancillary variable X in the first phase; 

xys  Estimated covariance of Y and X in the second phase; 

ρ̂  Estimated coefficient of correlation of Y and X. 

For the ratio estimator, the mean of the target variable is estimated as, 

 mdr
yy x rx
x

′ ′= =  

with an estimated variance of the estimated mean as, 

 
2 2 2 2 2 22 2ˆ( ) y x xy xy x y

mdr
s r s rs rs r s s

V y
n n N
′ ′+ − −

= + −
′

 

And for the regression estimator, the mean is estimated as, 

( )mdregy y b x x′= + −  

with an estimated variance of the estimated mean as, 
2

2ˆ ˆ( ) 1y
mdreg

s n nV y
n n

ρ
′ − = − ′ 

 

Examples: 
1. Aerial photographs or satellite images are used to measure the ancillary variable, for 

example percentage crown cover. In the second phase, field plots are selected to 
measure the target variable such as volume or biomass per ha and the ancillary 
variables. Thus, a regression can be established which allows to predict the target 
variable once the ancillary variable is known. In many cases, this regression, 
however, is not very strong so that the overall precision that can be achieved is 
moderate. One of the main issues and source of errors in this example is the accuracy 
of co-registration between remote sensing imagery and [sample plot|field plots]. 

2. This example is on the estimation of leaf area of a tree, as, for example, needed to 
determine the leaf area index. Here, leaf area is difficult to measure; it is much easier 

http://wiki.awf.forst.uni-goettingen.de/wiki/index.php?title=Ancillary_variable&action=edit&redlink=1
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php/Volume_functions
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php/Biomass_functions_and_carbon_estimation
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php/Accuracy_and_precision
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php?title=Remote_sensing&action=edit&redlink=1
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php?title=Leaf_area&action=edit&redlink=1
http://en.wikipedia.org/wiki/Leaf_Area_Index
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to observe leaf weight. Therefore, a regression is established in the second phase that 
allows predicting leaf area from leaf weight; a sample of leaves is taken in the second 
phase sample of which both leaf area and leaf weight are determined. In order to 
apply this regression, the mean (or total) leaf weight needs to be determined: for this 
purpose, a large sample is taken in the first phase. In this example, a major issue is 
the sampling frame for the first phase sample, that needs to be carefully defined (or 
a sampling technique is applied that does not require the a-priori definition of the 
sampling frame such asrandomized branch sampling). 

2. Sampling on Successive Occasions or Successive Sampling 
2.1 Introduction 
Surveys often gets repeated on many occasions (over years or seasons) for estimating same 
characteristics at different points of time. The information collected on previous occasion can 
be used to study the change or the total value over occasion for the character and also in 
addition to study the average value for the most recent occasion. For example in milk yield 
survey one may be interested in estimating the  
1. Average milk yield for the current season,  
2. The change in milk yield for two different season and  
3. Total milk production for the year.  
The successive method of sampling consists of selecting sample units on different occasions 
such that some units are common with samples selected on previous occasions. If sampling 
on successive occasions is done according to a specific rule, with partial replacement of 
sampling units, it is known as successive sampling. The method of successive sampling was 
developed by Jessen (1942) and extended by Patterson (1950) and by Tikkiwal (1950, 53, 56, 
64, 65, 67) and also Eckler (1955). Singh and Kathuria (1969) investigated the application of 
this sampling technique in the agricultural field. Hansen et al. (1955) and Rao and Graham 
(1964) have discussed rotation designs for successive sampling. Singh and Singh (1965), 
Singh (1968), Singh and Kathuria (1969) have extended successive sampling for many other 
sampling designs. 
Generally, the main objective of successive surveys is to estimate the change with a view to 
study the effects of the forces acting upon the population. For this, it is better to retain the 
same sample from occasion to occasion. For populations where the basic objective is to study 
the overall average or the total, it is better to select a fresh sample for every occasion. If the 
objective is to estimate the average value for the most recent occasion, the retention of a part 
of the sample over occasions provides efficient estimates as compared to other alternatives. 
One important question arises in the context of devising efficient sampling strategies for 
repetitive surveys is whether the same sample is to be surveyed on all occasions, or fresh 
samples are to be chosen on each of the occasions; in what manner the composition of the 
sample is changed from occasion to occasion. 
The answer depends on, apart from field difficulties, the specific problems of estimation at 
hand. For instance if the aim is to estimate only the difference between the item mean on the 
current ( y ) and on the previous ( x ) occasion, then the sample on both the occasion would 

http://wiki.awf.forst.uni-goettingen.de/wiki/index.php/Population
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php/Category:Sampling_design
http://wiki.awf.forst.uni-goettingen.de/wiki/index.php/Randomized_branch_sampling
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give rise to a better estimate than the independent samples since the variance of the estimate 
in the former case viz,  

V ( y x− ) = V ( y ) + V ( x ) – 2COV ( y , x ) < V ( y ) + V ( x ), 

as y and x are highly correlated so that Cov ( y , x ) >0 . 

On the contrary, for estimating the average of the means the latter would be better than the 
former in that  

V ( y x+ ) = V ( y ) + V ( x ) + 2Cov ( y , x ) >V ( y ) + V ( x ), 

But, if the difference between the means and also their average are to be estimated 
simultaneously, clearly neither of this alternatives are desirable ,hence arises the idea of 
retaining a part (say Sc) of the previous sample (say S1) and supplement it by a set ( saySf) of 
fresh units on the current occasion, and the data retaining to x on , x and y on, and y 
on1ScSfS build up the optimum estimator of Y so that it ,together with the estimate of X , 
would give rise to efficient result for difference between Y and X ,and also their average 
.The question then would be that big or small the set of common units or fresh units, should 
be for the surveys on the current occasion,how should these samples be chosen and what 
procedure be employed for working out estimates. The entire question is interrelated and 
depends ultimately on the regression of y on x. It is known that regression of y on x is linear 
with significant intercepts then we may choose fromby SRS without replacement and then 
employ regression estimator, or when the intercept is not significant the sample may be 
chosen by SRS and ratio estimator be employed. 

 
2.2 Sampling on Two Successive Occasions 
It is assumed that the survey population remains unaltered from occasion to occasion. For the 
purpose of generality, let the sample size for the first occasion be n1 and for second occasion 
be, n2=n12+n22, where n12 is the number of common units between the 1st and the 2nd 
occasion and n22 units to be drawn afresh on the second occasion. The data obtained on 
current (i.e. 2nd in this case) occasion would be denoted by y and that on the previous 
occasion (i.e. 1st in this case) by x. Now the sampling procedure consists of the following 
steps: 

1. From the given survey population choose a sample S1of size n1 units by SRS without 
replacement for survey on the first occasion. 

2. On the second occasion choose a set Scofn12 units from the sample taken at step(1a) 
either by SRS or PPS sampling depending on the situation at hand and supplement it 
to another set Sf of n22 units taken independently from the unsurveyed  N- n1 units of 
the population by    SRS without replacement so that the total sample S2on the 
second occasion comprises n2units. Now S1 acts as a preliminary sample.  

3. The unbiased estimator of Y  based on y and x values of Sc and x values of S1 would 
be given as, 
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3. Application of Successive Sampling in Agriculture for Estimating the Incidence of 
Pest and Diseases on the Field Crops  
This work is done by T.P. Abraham, R.K. Khosla and O.P. Kathuria from Institute of 
Agricultural Research Statistics, New Delhi-12, in the year 1969.  
Surveys to estimate the incidence of pest and diseases on field crops have to be generally 
repeated due to large variation in the incidence of pest and diseases from year to year. It is 
therefore interesting to examine the partial replacement of units in such repeat surveys 
especially when taking some of the sampling units common from one year to another is 
operationally convenient. In particular, we examine how far partial matching of sampling 
units is helpful in obtaining a better estimate of,  
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1. The incidence in the second year of the survey.  
2. The changes in occurrence from one year to other,  
3. Overall mean incidence over the two year. 

 
For this a survey was conducted in Cuttack district of Orissa on major pest of rice (i.e. stem 
borer and gallfly) and major disease was Helminthosporium oryzae, in each of the fields 
periodical observation was on various pest and diseases are taken at an interval about a 
month and up to and including harvest the first observation is taken after a month of planting. 
Now in each of the plots the no of the plots the number of the plants are recorded. The 
number of dead hearts due to stem borer is recorded and silver shoot by gall fly is also 
recorded. In case of helminthosporium disease, some plants are selected and the leaves with 
maximum infection are chosen and the intensity of the infection was noted in comparison 
with the standard chart given by Central Rice Research Institute, Cuttack. Also the 
manifestation by those pests also noted field wise average percentage of incidence of pest 
and diseases was worked out.  
The estimates in change in incidence of stem borer and gallfly was taken mainly on kharif 
and rabi season and it is found after applying the method s of sampling on different occasion 
it is seen that the incidence of stem borer and gallfly in the months of March and October 
during rabi and kharif seasons respectively is more than any other months. it is also found 
that the incidence of those pest is much more in kharif than in rabi season. So we can see 
how this sampling scheme can be used in agricultural experiments. 
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1. Introduction 
The reliability of the estimates from a survey depends on the errors that are affecting the 
survey. Groves (1989, Chapter 1) gives an excellent review of the potential sources of 
survey errors. Total survey error is sum of sampling error and non-sampling error. The 
former is as a result of selecting a sample instead of canvassing the whole population, 
while the latter is mainly due to adopting wrong procedures in the system of data 
collection and/or processing. In other words, sampling errors arise solely as a result of 
drawing a probability sample rather than conducting a complete enumeration. Non-
sampling errors, on the other hand, are mainly associated to data collection and 
processing procedures. The quality of a sample estimator of a population parameter is 
therefore a function of total survey error, comprising both sampling and non-sampling 
errors. Both sampling and non-sampling errors need to be controlled and reduced to a 
level at which their presence does not defeat or obliterate the usefulness of the final 
sample results. This chapter will focus of non-sampling error in surveys.  
 

2. Definition, Concept and Source of Non-Sampling Errors 
Non-sampling error is an error in sample estimates which cannot be attributed to 
sampling fluctuations. Non-sampling errors may arise from many different sources such 
as defects in the frame, faulty demarcation of sample units, defects in the selection of 
sample units, mistakes in the collection of data due to personal variations or 
misunderstanding or bias or negligence or dishonesty on the part of the investigator or of 
the interviewer, mistakes at the stage of the processing of the data, etc. It may also arise 
from poorly designed survey questionnaires, improper sample allocation and selection 
procedures, and/or errors in estimation methodology. These errors are unpredictable and 
not easily controlled. Unlike in the control of sampling error this error may increase with 
increases in sample size. If not properly controlled non-sampling error can be more 
damaging than sampling error. It is noteworthy that increasing the sample size will not 
reduce this type of error.   
These errors are caused by the mistakes in data processing. It includes: 

– Over coverage: Inclusion of data from outside of the population. 

– Under coverage: Sampling frame does not include elements in the population. 

– Measurement error: The respondents misunderstand the question. 

– Processing error: Mistakes in data coding. 

– Non-response: errors because some selected units could not be contacted or 
refused to provide the information 

Acquisition errors arise from the recording of incorrect responses, due to:  

– incorrect measurements being taken because of faulty equipment, 

– mistakes made during transcription from primary sources, 

http://www.investorwords.com/10654/poorly.html
http://www.businessdictionary.com/definition/survey.html
http://www.businessdictionary.com/definition/questionnaire.html
http://www.businessdictionary.com/definition/sample.html
http://www.businessdictionary.com/definition/allocation.html
http://www.businessdictionary.com/definition/selection.html
http://www.businessdictionary.com/definition/procedure.html
http://www.businessdictionary.com/definition/error.html
http://www.businessdictionary.com/definition/methodology.html
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– inaccurate recording of data due to misinterpretation of terms, or 

– inaccurate responses to questions concerning sensitive issues 
Note that non-sampling errors can be generally defined as any source of bias or error in 
the estimation of a population characteristic in which the uncertainty about the resulting 
estimate is NOT due to the fact that we’re sampling. We can think of them as errors for 
which increasing the sample size will not aid us in our estimation. 
 

3. Types of Non-Sampling Errors 
Brieumer and Lyberg (2003) identify five components of non sampling error, namely 
specification, frame, non-response, measurement and processing error. We may add that 
estimation error is another error, which should be considered. However, non-response and 
measurement errors are two main non-sampling errors that we generally talk. These types 
of error are briefly discussed below.   

i. Specification Error 
This occurs when the concept implied by the question is different from the underlying 
construct that should be measured. A simple question such as how many children does a 
person have can be subject to different interpretations in some cultures. In households 
with extended family member’s biological children may not be distinguished from 
children of brothers or sisters living in the same household. In a disability survey, a 
general question asking people whether or not they have a disability can be subject to 
different interpretations depending on the severity of the impairment or the respondent’s 
perception of disability. People with minor disabilities may perceive themselves to have 
no disability. Unless the right screening and filter questions are included in the 
questionnaire, the answers may not fully bring out the total number of people with 
disabilities. 

ii. Coverage or Frame Error 
In most area surveys primary sampling units comprise clusters of geographic units 
generally called enumeration areas (EAs). It is not uncommon that the demarcation of 
EAs is not properly carried out during census mapping. Thus households may be omitted 
or duplicated in the second stage frame. Frame imperfections can bias the estimates in the 
following ways: If units are not represented in the frame but should have been part of the 
frame, these results in zero probability of selection for those units omitted from the frame. 
On the other hand if some units are duplicated, this results in over coverage with such 
units having larger probabilities of selection.  Errors associated with the frame may, 
therefore, result in both over coverage and under coverage.  Non-coverage denotes failure 
to include some sample units of a defined survey population in the sampling frame. 
Because such units have zero probability of selection, they are effectively excluded from 
the survey results. 
It is important to note that we are not referring here to deliberate and explicit exclusion of 
sections of a larger population from survey population. Survey objectives and practical 
difficulties determine such deliberate exclusions. For example attitudinal surveys on 
marriage may exclude persons under the minimum legal age for marriage. Residents of 
institutions are often excluded because of practical survey difficulties. Areas in a country 
infested with landmines may be excluded from a household survey to safeguard the safety 
of field workers. When computing non-coverage rates, members of the group deliberately 
and explicitly excluded should not be counted either in the survey population or under 
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non-coverage. In this regard defining the survey population should be part of the clearly 
stated essential survey conditions. Non-coverage is often associated with problems of 
incomplete frames. Examples are to omissions in preparing the frame but also missed 
units, implying omissions due to faulty execution of survey procedures. Thus non-
coverage refers to the negative errors resulting from failure to include elements that 
would, under normal circumstances, belong in the sample. Positive errors of over 
coverage also occur due to inclusion in the sample of elements that do not belong there. 
The term gross coverage error refers to the sum of the absolute values of non-coverage 
and over coverage error rates. The net non-coverage refers to the excess of non-coverage 
over coverage. It is, therefore, their algebraic sum. The net coverage measures the gross 
coverage only if over coverage is absent. Most household surveys in developing countries 
suffer mainly from under coverage errors. Most survey research practitioners agree that in 
most social surveys non-coverage is a much more common problem than over coverage. 
Corrections and weighting for non-coverage are much more difficult than for non-
responses, because coverage rates cannot be obtained from the sample itself, but only 
from outside sources.  
The non-coverage errors may be caused by the use of faulty frames of sampling units. If 
the frames are not updated or old frames are used as a device to save time or money, it 
may lead to serious bias. For example, in a household survey if an old list of housing 
units is not updated from the time of its original preparation say 10 years prior the current 
survey, newly added housing units in the selected enumeration area will not be part of the 
second stage frame of housing units. Similarly, some disbanded housing units will remain 
in the frame as blanks. In such a situation, there may be both omission of units belonging 
to the population and inclusion of units not belonging to the population. 
At times there is also failure to locate or visit some units in the sample. This is a problem 
with area sampling units in which the enumerator must identify and list the households 
according to some definition. This problem arises also from use of incomplete lists. Some 
times weather or poor transportation facilitates make it impossible to reach certain units 
during the designated period of the survey. Survey results can, therefore, be distorted if 
the extent of non-coverage differs between geographical regions, sub groups, the 
population such as sex, age groups, ethnic and socio-economic classes. In general good 
frames should provide a list of sampling units from which a sample can be selected and 
sufficient information on the basis of which the sample units can be uniquely identified in 
the field. 
Non-coverage errors differ from non-response. The latter, results from failure to obtain 
observations on some sample units, due to refusals, failure to locate addresses or find 
respondents at home and losses of questionnaires. The extent of non-response can be 
measured from the sample results by comparing the selected sample with that achieved. 
By contrast the extent of non-coverage can only be estimated by some kind of check 
external to the survey operation. 

Sample selection and implementation errors 
This strictly refers to losses and distortions within then sampling frame. Example, the 
wrong application of the selection procedures and selection probabilities. One glaring 
example is the inappropriate substitution of the selected units by others especially when 
systematic sampling is used in the field. 
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Reducing coverage error 
The most effective way to reduce coverage error is to improve the frame by excluding 
erroneous units and duplicates and updating the frame through filed work to identify units 
missing from the frame. It is also important to undertake a good mapping exercise during 
the preparatory stages of a population and housing census. However, the frame prepared 
during the census should be updated periodically. It is also imperative to put in place 
procedures that will ensure the coverage of all selected sample units. 

iii. Non-response errors  
Non-response is error due to not all selected elements yield their information (i.e., failure 
to measure some of the sample units), which usually means that the population of interest 
is not the population from which the sample is drawn. It is a problem usually associated 
with surveys or interviews – any situation in which the human element is involved. 
People can and will refuse information for a wide variety of reasons – they could be busy, 
uninterested, suspicious of the surveyor’s intentions, afraid they won’t be anonymous, or 
simply uncooperative. The problem with non-response is that it changes our sampling 
frame – if some elements will not give us their information, then effectively we are 
sampling from the population of potential responders, not the population of interest.  For 
example, let: 

N = total population size, and µ = population mean 

N1 = total potential responders, and µ1 = population mean of responders 
N2 = total potential non-responders, and  

µ2 = population mean of non-responders 
Suppose we conduct a simple random sampling (SRS) from this population, with 
estimation via the usual sample mean (which is unbiased under SRS when all unit 
respond). Is the sample mean unbiased when there is non-response?  No, because all of 
our data is drawn from the population of responders, and thus we are really estimating is 
µ1, not µ. Let y denote the variable of interest. The bias in this case can be shown to be 
( )( )2 1 2/  –N N y y , where 1y  and 2y   are the averages of y for responders and non-
responders respectively. We can think of this situation as a stratified sample where the 
population is broken into two strata, and we only have data from one stratum. Remember 
that the simple estimator used on data from a stratified sample is biased for µ - the same 
thing applies here.   

Notice that if µ1 = µ2, in other words, if the populations of responders and non-responders 
are the same, then µ1 = µ, and we are out of the woods – we can do everything in the same 
manner as we have all along.  Evaluating whether or not the responders and non-
responders are the same involves making an assumption, and that assumption is more or 
less reasonable depending on each specific situation. So what if we can’t reasonably 
assume that the groups of responders and non-responders are similar, or if we prefer not 
to let our analysis ride on a subjective assessment?  There are some alternatives.  
In most cases non-response is not evenly spread across the sample units but is heavily 
concentrated among subgroups. As a result of differential non-response, the distribution 
of the achieved sample across the subgroups will deviate from that of the selected sample. 
This deviation is likely to give rise to non-response bias if the survey variables are also 
related to the subgroups. 
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The most obvious method of reducing non-response bias is to convert non-responders 
into responders. Recall the equation for non-response bias: ( )( )2 1 2/  – .N N y y  One way 
to reduce the absolute value of this quantity is to reduce 2 /N N , i.e., reduce the 
proportion of non-responders in the population. The ways to do this are numerous. Here 
is a medium-sized list, with short discussions of pros and cons. Some are specific, some 
are general, some are practical and some are psychological. They appear in no particular 
order. 

Ways to Convert Non-responders into responders 
i. If you are conducting a telephone or face-to-face interview, make sure you call/visit 

at times when the person to be interviewed is likely to be home.   
ii. If you intend to send a mail survey, confirm that the people you wish to survey still 

live at the address you have on file.  If a particular individual does not respond, you 
may want to send a representative to the address to find out if they are there, or 
perhaps to find out to where they have moved.  If you want to sample whoever is 
currently living in the address you’ve selected, label the envelope, for example, 
“Mr. and Mrs. XYZ or current resident.” 

iii. For mailed surveys in particular, studies have shown that using attractive, high 
quality, official-looking envelopes and letterhead can improve response 
significantly. Include a carefully typed cover letter explaining your intentions, and 
guaranteeing their confidentiality.  Get a big-wig from your company or 
organization to sign it (personally, if possible). Always send materials through first-
class mail, and include a return envelope with first-class postage. 

iv. Keep surveys and interviews as short as possible.  As a general rule, the more 
questions you ask, the less likely you are to get accurate (or any) information. 

v. Use the guilt angle whenever possible (but do it implicitly, don’t beg).  What I mean 
by this is simply to increase the amount and quality of personal contact with your 
population.  Psychologically speaking, for most people it’s easy to throw away a 
mailed survey, considerably harder to hang-up on an interviewer, and harder yet to 
walk away.  Therefore, choose a face-to-face interview over a phone interview, and 
choose a phone interview over a mailed survey, whenever it is practical to do so. 

vi. Publicizing or advertising your survey often helps with non-response. This lets 
people know they are not the only one being surveyed and helps with credibility. 
Use endorsements by celebrities, important individuals, or respected institutions if 
you are able. 

vii. Offer an incentive.  Money is by far the best, because it has the most universal 
appeal.  Be careful when using other incentives, because you do not want to elicit 
responses from some specific subgroup of the population who happens to want or 
like what you’re offering.   Whether to offer the incentive up-front or upon return of 
the survey is basically a toss up in terms of effectiveness – but the former will be 
considerably more expensive. 

In addition to the above, there is one more method that requires a bit more attention, 
called ‘double sampling.’ At the core, it is really just a two-stage sample. In the first 
stage, try to elicit responses through a cheap and easy method, such as a mailed survey. In 
the second stage, go after a random sample of the non-responders from stage 1 with the 
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big guns – telephone or face-to-face interviewing. This is a fairly well studied method, 
with suggested estimators.  

Non-response rate 
The non-response rate can be accurately measured if accounts are kept of all eligible 
elements that fall into the sample. Response rate for a survey is defined as the ratio of the 
number of questionnaires completed for sample units to the total number of sample units. 
Reporting of non-response is good practice in surveys. Non-response can be due to 
respondents not being -at-home, refusing to participate in the survey, being incapacitated 
to answer questions and to lost schedules/ questionnaires. All categories of non-response 
refer to eligible respondents and should exclude ineligibles.  
There are two types of non-responses: unit non-response and item non-response. Unit 
non-response implies that no information is obtained from certain sample units. This may 
be because respondents refuse to participate in the survey when contacted or they cannot 
be contacted. Item non-response refers to a situation where for some units the information 
collected is incomplete. Item non-response is therefore, evidenced by gaps in the data 
records for responding sample units. Reasons may be due to refusals, omissions by 
enumerators and incapacity. 
The magnitude of unit (total) non-response, among other reasons, is indicative of the 
general receptivity, complexity, organisation and management of the survey. The extent 
of item non-response is indicative of the complexity, clarity and acceptability of 
particular items sought in a questionnaire and the quality of the interviewer work in 
handling those items. 
Non-response errors can introduce bias in the survey results especially in situations in 
which the non-responding units are not representative of those that responded. Non-
response increases both the sampling error, by decreasing the sample size, and non-
sampling errors. 
The basics assumption in the previous sections dealing with basic theory of sampling is 
that the probability of the sample unit being available for interview is one. In practice 
non-response occurs with varying degrees in different surveys. In general, follow ups can 
increase the number of responses. 
In summary the types of non respondents include: 

1. Not-at-homes: prospective respondents who may not be at home when 
enumerators visit their households.  

2. Refusals: respondents who refuse to give information for whatever reasons. 
3. Not identifiable respondents. 

Causes of non-response 
Respondents to provide information can cause non-response error, they are being not at 
home or by sample units not being accessible. This introduces errors in the survey results 
because sample units excluded may have different characteristics from the sample units 
for which information was collected. Refusal by a prospective respondent to take part in a 
survey may be influenced by many factors, among them, lack of motivation, shortage of 
time, sensitivities of the study to certain questions, etc. Groves and Couper (1995) 
suggest a number of causes of refusals, which include social context of the study, 
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characteristics of the respondent, survey design (including respondent burden), 
interviewer characteristics and the interaction between interviewer and respondent.  
Errors arise from the exclusion of some of the units in the sample. This may not be a 
serious problem if the characteristics of the non-responding units are similar to those of 
the responding units, serve for large sampling errors. But such similarity is not common 
in practice.   
With specific reference to item non-response, questions in the survey may be perceived 
by the respondent as being embarrassing, sensitive or/and irrelevant to the stated 
objective. The enumerator may skip a question or ignore recording an answer. In addition, 
a response may be rejected during editing. Non-response cannot be completely eliminated 
in practice, however it can be minimized by persuasion through repeated visits or other 
methods.  

Reducing non-response 
A number of procedures can be used in survey design in an attempt to reduce the number 
of refusals. For example in face-to-face interviews, interviewers are supposed to be 
carefully trained in strategies to avoid refusals, and they are to return to conduct an 
interview at the convenience of the respondent. The objectives and value of the surveys 
should generally and carefully be explained to respondents so that they can appreciate and 
cooperate. Assurance of confidentiality can help to alleviate fear respondents may have 
about the use of their responses for purposes other than those stipulated for the survey. 
The following are some of the steps that can be undertaken to reduce non-response on 
household surveys: 

Good frames 
In many developing countries there are problems of locating sample units. This results in 
some form of non-response error. In such cases it would be helpful to have good frames 
of both area units and housing listings, to facilitate easy identification of all respondents. 
In addition, the workloads of enumeration staff should be manageable within the allotted 
time frame for the survey. This enables them to reach all sample units within the assigned 
cluster or enumeration area. During listing of households, for example, enough auxiliary 
information should be collected to facilitate distinction and easy location of the sample 
unit. Whenever, possible enumerators should know the area they work in very well and 
should preferably be stationed in the assigned work areas. 

Interview training, selection and supervision 
In personal interview surveys, the enumerator can play an important role in maximising 
response from respondents. The way interviewers introduce themselves, what they say 
about the survey, the identity they carry, and the courtesy they show to respondents 
matter. In most household surveys the enumerator is the only link between the survey 
organisation and respondent. It is for this reason that enumerators and their supervisors 
should be carefully selected, well trained and motivated. Close supervision of 
enumerator’s work and feedback on achieved response rate is of paramount importance. 

Follow up of non-responding units 
There should be follow up of non-respondents or make all effort to collect information 
from a sub-sample of the units who did not respond in the first place. This can be treated 
as a different stratum, from the responding stratum, in which better enumerators or 
supervisors may be assigned to interview respondents. The extent of refusals will depend 
on the subject matter of the survey (sensitive subjects are prone to high refusals), length 
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of and complexity of the questionnaire and skills of the survey team. The not-at-home 
respondents should be followed up. Depending on the resources and duration of the 
survey in face-to-face interviews at least four callbacks are recommended. These should 
be made during different days and different times of the day (villages give example of 
farming period). 

iv. Measurement Errors  
These errors arise from the fact that what is observed or measured departs from the actual 
values of sample units. These errors centre on the sustentative content of the survey such 
as definition of survey objectives, their transformation into usable questions, and the 
obtaining, recording, coding and processing of responses. These errors concern the 
accuracy of measurement at the level of individual units. 
For example at the initial stage wrong or misleading definitions and concepts on frame 
construction and questionnaire design lead to incomplete coverage and varied 
interpretations by different enumerators leading to inaccuracies in the collected data.  
Inadequate instructions to field staff are another source of error. For some surveys 
instructions are vague and unclear leaving enumerators to use their own judgement in 
carrying out fieldwork. At times sample units in the population lack precise definition, 
thereby resulting in defective and unsatisfactory frames. The enumerators themselves can 
be a source of error. At times the information on items for all units may be wrong, this is 
mainly due to inadequate training of field workers. Depending on the type and nature of 
enquiry or information collected, these errors may be assigned to respondents or 
enumerators or both. At times there may be interaction between the two, which may 
contribute to inflating such errors. Likewise, the measurement device or technique may be 
defective and may cause observational errors. Reasons for such errors are: 

- Inadequate supervision of enumerators. 
- Inadequately trained and experienced field staff. 
- Problems involved in data collection and other type of errors on the part of 

respondents. 
Non-sampling errors occur because procedures of observation or data collection are not 
perfect and their contribution to the total error of the survey may be substantially large 
thereby affecting the survey results adversely. At times respondents may introduce errors 
because of the following reasons: 

- Failure to understand the question. 
- Careless and incorrect answers from respondent due to, for example, lack of 

adequate understanding of the objective(s) of the survey. The respondent may not 
give sufficient time to think over the questions. 

-  Respondents answering questions even when they do not know the correct 
answer. 

-  Deliberate inclination to give wrong answers, for example, in surveys dealing with 
sensitive issues, such as income and stigmatised diseases. 

-  Memory lapses if there is along reference period, a case in point is the collection 
information on non-durable commodities in expenditure surveys. 
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The cumulative effect of various errors from different sources may be considerable since 
errors from different sources may not cancel. The net effect of such errors can be a large 
bias. 

v. Processing Errors 
Processing errors comprise: 

- Editing errors. 
- Coding errors. 
- Data entry errors. 
- Programming errors etc. 

The above errors arise during the data processing stage. For example in coding open 
ended answers related to economic characteristics, coders may deviate from the laid out 
procedures in coding manuals, and therefore assign wrong codes to occupations. In 
addition, the weighting procedures may be wrongly applied during the processing stage, 
etc.  

vi. Errors of estimation 
These arise in the process of extrapolation of results from the observed sample units to 
the entire target population. These include errors of coverage, sample selection and 
implementation, non-response, as well as sampling variability and estimation bias. This 
group of errors centres on the process of sample design, implementation and estimation. 
Biases of the estimating procedure may either be deliberate, due to the uses of a biased 
estimation procedure or it may be due to inadvertent use of wrong formula. 

Bias and variable error 
The main types of survey errors are generally divided into two main kinds: 

- Survey biases due to definitions, measurement and responses. 
- Sampling variable errors. 

However, we should also take note that there are sampling biases and variable non-
sampling errors. Bias refers to systematic errors that affect any sample taken under a 
specified survey design with the same constant error. Ordinarily, sampling errors account 
for most of the variable errors of a survey, and biases arise mainly from non-sampling 
sources. In this connection, bias arises from the flaws in the basic survey design and 
procedures. While variable error occurs because of the failure to consistently apply 
survey designs and procedures. A widely accepted model combines the variable error and 
the bias into total error, which is a sum of variable error, and bias. 
The mean square error (MSE) for an estimate is equal to the variance plus the squared 
bias (MSE = Variance + Squared bias). If for arguments sake the bias were zero, the MSE 
would therefore be the variance of the estimate. In most cases bias is not zero. As earlier 
indicated measuring bias in surveys may not be easy, partly because its computation 
requires the knowledge of the true population value which in most cases is not a practical 
proposition.  
In practice non-sampling errors can decompose into variable component and systematic 
errors. According to Biemer and Lyberg (2003) there are two types of non-sampling 
error, namely systematic and variable error, the latter are generally non compensating 
errors and therefore tend to agree ( in most cases, mostly in the same direction e.g. 
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positive), while the latter are compensating errors that tend to disagree ( cancelling each 
other). 

Variable component 
The variable component of an error arises from chance (random) factors affecting 
different samples and repetition of the survey. In the case of the measurement process we 
can imagine that the whole range of procedures from enumerator selection, data 
collection to data processing can be repeated using the same specified procedures, under 
the same given conditions, and independently without one repetition affecting another. 
The results of repetitions are affected by random factors, as well as systematic factors, 
which arise from conditions under which repetitions are undertaken and affect the results 
of the repetition the same way.  When the variable errors (VE) are caused only by 
sampling errors, VE squared equals sampling variance. The deviation of the average 
survey value from the true population value is the bias. Both variable errors and biases 
can arise either from sampling or non-sampling operations. The variable error will 
measure the divergence of the estimator from its expected value and it comprises both 
sampling variance and non-sampling variance. The difference of the expected value of the 
estimator from its true value is total bias and comprises both sampling bias and non-
sampling bias. 

Systematic error 
This occurs when there is a tendency either to consistently underreport or over report in a 
survey. For example in some societies where there are no birth certificates, there is a 
tendency among men to exaggerate. This will result in systematic bias of the average age 
in the male population, producing a higher average than what the true average age should 
be. Variable errors can be assessed on the basis of appropriately designed comparisons 
between repetitions (replications) of survey operation under the same conditions. 
Reduction in variable errors depends on doing more of something e.g. larger sample size, 
more interviewers etc. on the other hand bias can be reduced only by improving survey 
procedures by doing something more, e.g. additional quality control measures at various 
stages of the survey operation. 

Sampling bias 
Sampling biases may arise from inadequate or faulty conduct of the specified probability 
sample or from faulty methods of estimation of the universe values. The former includes 
defects in frames, wrong selection procedures, and partial or incomplete enumeration of 
selected units. In general, biases are difficult to measure, that is why we emphasize their 
rigorous control. Their assessment can only be done by comparing the survey results with 
external reliable data sources. On the other hand variable error can be assessed through 
comparisons between sub-divisions of the sample or repetition of the survey under the 
same conditions. Bias can be reduced by improving survey procedures. As earlier stated 
biases can be negative or positive. 
In summary, bias arises from factors, which are a part of essential conditions and affect 
all repetitions in more or less the same way. Biases arise from shortcomings in the basic 
survey design and procedures. In general, biases are harder to measure and can only be 
assessed on the basis of comparison with more reliable sources outside the normal survey 
or with information obtained by using improved procedures. Some sources of error 
appear mainly in the form of bias, among them coverage, non-response, and sample 
selection. On the other hand errors in coding and data entry may appear largely as 
variable error. Although both systematic and variable error reduces accuracy, bias is more 
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damaging in estimates such as population means, proportions and totals. These linear 
estimates are sums of observations in the sample. It should be noted that variable non-
sampling errors like sampling errors could be reduced by increasing the sample size. For 
nonlinear estimates such as correlation coefficients, standard errors and regression 
estimates both variable and systematic error can lead to serious bias (Biemer and Lyberg, 
2003).  

Precision and accuracy 
These terms are widely used to separate the effects of bias. Precision generally refers to 
small variable errors; at times it denotes only the inverse of the sampling variance, i.e. it 
excludes bias. Accuracy refers to small total errors and includes the effect of bias. A 
precise design must have small variable errors while an accurate design must be precise 
and have zero or small bias. A survey design is still precise if it has a large bias but with 
small variable errors. Such a design is however, not accurate. Note that reliability refers 
mainly to precision of measurements whereas validity to lack of bias in the 
measurements. 
 

4. Assessing Non-Sampling Errors 
Consistency check 
In designing the survey instruments (questionnaires), special care has to be taken to 
include certain items of information that will serve as a check on the quality of the data to 
be collected. If the additional items of information are easy to obtain, they may be 
canvassed for all units covered in the survey, otherwise, they may be canvassed only for a 
sub-sample of units. For example, in a post census enumeration survey (PES), where the 
de jure method is followed it may be helpful to also collect information on de facto basis, 
so that it will be possible to work out the number of persons temporarily present and the 
number of persons temporarily absent. A comparison of these two figures will give an 
idea of the quality of data. Similarly, inclusion of items leading to certain relatively stable 
ratios such as sex ratios may be useful in assessing the quality of survey data. 

Sample check/verification 
One way of assessing and controlling non-sampling errors in surveys is to independently 
duplicate the work at the different stages of operation with a view to facilitating the 
detection and rectification of errors. For practical reasons the duplicate checking can only 
be carried out on a sample of the work by using a smaller group of well- trained and 
experienced staff. If the sample is properly designed and if the checking operation is 
efficiently carried out, it would be possible, not only to detect the presence of non-
sampling errors, but also to get an idea of their magnitude. If it were possible to 
completely check the survey work, the quality of the final results could be considerably 
improved. With the sample check, rectification work can only be carried out on the 
sample checked. This difficulty can be overcome by dividing the output at different stages 
of the survey, e.g. filled in schedules, coded schedules, computation sheets, etc., into lots 
and checking samples from each lot. In this case, when the error rate in a particular lot is 
more than the specified level, the whole lot may check and corrected for the errors, 
thereby improving the quality of the final results. 

Post-survey checks 
An important sample check, which may be used to assess non-sampling errors consists of 
selecting a sub-sample, or a sample in the case of a census, and re-enumerating it by using 
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better trained and more experienced staff than those employed for the main investigation. 
For this approach to be effective, it is necessary to ensure that;  
-  The re-enumeration is taken up immediately after the main survey to avoid any 

possible recall error. 
- Steps are taken to minimize the conditioning effect that the main survey may have on 

the work of the post survey check.  
Usually the check-survey is designed to facilitate the assessment of both coverage and 
content errors. For this purpose, it is first desirable to re-enumerate all the units in the 
sample at the high stages, e.g. EAs and villages, with the view of detecting coverage 
errors and then to resurvey only a sample of ultimate units ensuring proper representation 
for different parts of the population which have special significance from the point of 
view of non-sampling errors. A special advantage of the check-survey is that it facilitates 
a unitary check, which consists first, of matching the data obtained in the two 
enumerations for the units covered by the check-sample and then analyzing the observed 
individual differences. When discrepancies are found, efforts are made to identify the 
cause of their presence and gain insight into the nature and types of non-sampling errors. 
If the unitary check is a problem due to time and financial constraints, an alternative but 
less effective procedure called aggregate check, may be used. This method consists in 
comparing estimates of parameters given by check-survey data with those from the main 
survey. The aggregate check gives only an idea of net error, which is the resultant of 
positive and negative errors. The unitary check provides information on both net and 
gross error.  
In post survey check, the same concepts and definitions, as those used in the original 
survey should be followed. 

Quality control techniques 
There is ample scope for applying statistical quality control techniques to survey work 
because of the large scale and repetitive nature of the operations involved in such work. 
Control charts and acceptance-sampling techniques could be used in assessing the quality 
of data and improving the reliability of the final results in large-scale surveys. Just for 
illustration, work of each data entry clerk could be checked 100 percent for an initial 
period of time, but if the error rate falls below a specified level, only a sample of the work 
may be verified.  

Study of recall errors 
Response errors, as earlier mentioned in this chapter, arise due to various factors such as: 

-  The attitude of the respondent towards the survey. 
-  Method of interview. 
-  Skill of the enumerator. 
-  Recall error. 

Of these, recall error needs particular attention as it presents special problems often 
beyond the control of the respondent. It depends on the length of reporting period and on 
the interval between the reporting period and the date of the survey. The latter may be 
taken care of by choosing for the reporting period a suitable interval preceding the date of 
survey or as near a period as possible. One way of studying recall error is to collect and 
analyse data relating to more than one reporting period in a sample or sub-sample of units 
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covered in a survey. The main problem with this approach is the effect of certain amount 
of conditioning effect possibly due to the data reported for one reporting period 
influencing those reported for the other period. To avoid the conditioning effect, data for 
the different periods under consideration may be collected from different sample units. 
Note tha t large samples are necessary for this comparison. Another approach is to collect 
some additional information, which will permit estimates for different reporting periods 
to be obtained. For example in a demographic survey one may collect not only age of 
respondent, but also date month and year of birth. The discrepancy will reveal any recall 
error that may be present in the reported age. 

Interpenetrating sub-sampling 
This method involves drawing from the overall sample two or more sub-samples, which 
should be selected in an identical manner and each capable of providing a valid, estimate 
of the population parameter. This technique helps in providing an appraisal of the quality 
of the information, as the interpenetrating sub-samples can be used to secure information 
on non-sampling errors such as differences arising from differential enumerator bias, 
different methods of eliciting information, etc. After the sub-samples have been surveyed 
by different groups of enumerators and processed by different teams of workers at the 
tabulation stage, a comparison of the estimates based on sub-samples provides a broad 
check on the quality of the survey results. For example, in comparing the estimates based 
on four sub-samples surveyed and processed by different groups of survey personnel, if 
three estimates are close to each other and the other estimate differs widely from them 
despite the sample size being large enough, then normally one would suspect the quality 
of work in the discrepant sub-sample. 
 

5. Conclusion 
Non-sampling errors should be given due attention in household sample surveys because 
they can cause huge biases in the survey results if not controlled. In most surveys very 
little attention is given to the control of such errors at the expense of producing results 
that may be unreliable. The best way to control non-sampling errors is to follow the right 
procedures of all survey activities from planning, sample selection up to the analysis of 
results. 
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1.0 Introduction  
The estimation of crop production is based on acreage under the particular crop and its 
average yield per hectare. Thus, the data on crop area and crop yield is a basic and timely 
requirement for estimation of prop production. In India, crop area is compiled on the basis 
of complete enumeration while the crop yield is estimated on the basis of sample survey 
approach. The estimates of yield rates are obtained using Crop Cutting Experiment (CCE) 
approach. The crops may be sown in rows (one direction, two directions) and without 
rows (broadcasting). Keeping in view the proper representation of each plant sown either 
in rows or otherwise, the three different methods are recommended for demarcation of 
CCE plot. The measurement of length and breadth of the field, determination of random 
number pair for marking of CCE plot is to be done atleast one month before the harvest of 
crop and marking of CCE plot may be done on the date of harvesting or before as per 
situation.  

2.0 Demarcation of CCE plot when crop is sown without rows (broadcasting) 
The crops like wheat, barley, mustard, gram, lentil, peas, greengram, blackgram, redgram 
maize, jowar, bajra, etc sown through either broadcasting or in compact rows without 
maintaining plant to plant distance within the row. Method of marking CCE plot is as 
under: 

2.1 Determination of random number pair for random step for length and breadth 
Two random numbers, one for length and the other for breadth have to be selected with 
the help of random number table. A column number of the random number is assigned to 
the primary worker for selecting these two random numbers. Steps in the length as well as 
breadth in a CCE plot have to be deducted separately from length and breadth of the 
selected field to ensure the whole CCE plot gets accommodate in the selected field. 
Suppose the shape of CCE plot is square of side 5 meter.  (7 steps = 5 meter 
approximately).  

Example: 

Length of the selected field (in steps) 120  

Steps in the length of CCE plot 007  

Length (in steps) of the selected field minus number of steps in the length of 
CCE plot 

113  

Breadth of the selected field (in steps) 70  

Steps in breadth of CCE plot 07  

Breadth (in steps) of the selected field minus steps in the breadth of CCE plot 63  
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Let column number 1 of random number table is assigned to the primary worker. A 
random number which is less than or equal to 113 is to be selected for length. Since 113 
comprises of three digits, therefore, by referring column number one of three digits 
random number table, random number 058 appeared first which is less than 113. 
Therefore, random number 058 is selected as random step for length. The second random 
number is to be selected for breadth. It should be less than or equal to 63. Since, 63 
comprises of two digits, therefore, by referring column number one of two digit random 
number table, random number 51 appeared first which is less than 63. Hence, random 
number 51 is selected random step for breadth. Random number pair (58, 51) is selected 
for locating the south-west corner of the CCE plot in the selected field. If the assigned 
column of random number table is exhausted during the process of selection of random 
numbers, the next column on the right hand side will have to be referred. If the whole or 
part of the CCE plot goes beyond the boundary of the selected field owing to irregular 
shape of the selected field, the random number pair should be rejected and a new random 
number pair should be selected till whole CCE plot accommodates within the field. 

2.2 Marking of CCE plot 
2.2.1 Marking of south-west corner of the CCE plot 
The selected random number for length as a random step is 58. Therefore, starting from 
the south-west corner of the selected field, measure 58 steps along the length of the 
selected field and the point where reached, measure 51 steps perpendicular to the length 
and parallel to breadth of the selected field because 51 is the random number selected as 
random step for breadth. Thus, the point “A” where reached by measuring 51 steps, is the 
south-west corner of the CCE plot (Figure-6.5.1.2.1). The point “A” is also called as the 
key point or first corner of the CCE plot. Fix a peg at the key point of the CCE plot.  

 
Figure-6.5.1.2.1: South-west corner of the CCE plot (Step-1) 

2.2.2 Marking of second corner of the CCE plot 
We measured five meter along the length of the selected field from corner “A” and the 
second point where we reached which is 5 meter away from corner “A” is the second 
corner “B” of the CCE plot. Fix a peg at corner “B” (Figure-6.5.1.2.2). The line joining 
“A” and “B” point is the base of the CCE plot. 
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Figure-6.5.1.2.2: Second corner of the CCE plot (Step-2) 

2.2.3 Marking of third corner of the CCE plot 
Third and fourth corner of the CCE plot is to be marked with the help of right angle 
triangle method. To mark the third corner, let first person stands at corner “A” by holding 
the measuring tape at 0 meter mark and second person must has to stands at corner “B” 
holding at 12.07 (7.07 diagonal + 5.0 one side) meter mark on the same measuring tape. 
The third person holding at 7.07 [sq rt (52 + 52)] meter mark on the measuring tape should 
stretch the measuring tape in the direction of breadth of the selected field, the point where 
he reached is the third corner “C” of the CCE plot. The third corner is 7.07 meter 
(diagonal) away from corner “A” and 5 meter from corner “B”. Fix a peg at corner “C” 
(Figure-6.5.1.2.3).  

 
Figure-6.5.1.2.3: Third corner of the CCE plot (Step-3) 

2.2.4 Marking of fourth corner of the CCE plot 
For locating the fourth corner of the CCE plot, the third person should change the holding 
position on the measuring tape as 5.0 meter mark away from corner “A” and 7.07 meter 
away from corner “B”. He should stretch the measuring tape in the direction of breadth of 
the field and where he reached is the fourth corner “D” of the CCE plot. Fix a peg at 
corner “D” (Figure-6.5.1.2.4).  
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Figure-6.5.1.2.4: Fourth corner of the CCE plot (Step-4) 

2.2.5 CCE plot 
A, B, C and D is the four corners of the CCE plot. We have to check the distance 5 meter 
between the each corner A & B, B & C, C & D and A & D. The distance 7.07 meter 
between each diagonal AC and BD should also be checked (Figure- 6.5.1.2.5).  

 
Figure-6.5.1.2.5: CCE plot (Step-5) 

 

 
CCE plot 

3.0 Demarcation of CCE plot when crop is sown in distinct rows in one direction 
The crops like potato, redgram, sugarcane, caster, cotton, etc. are sown in rows without 
maintaining plant to plant distance within the row. Procedure of demarcation of the CCE 
plot is as under: 
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3.1 Enumeration of rows 
Rows are to be enumerated starting from the south-west corner of the selected field. 
Conventionally, this side may be considered as breadth of the selected field (Figure-
6.5.2.1).  

 
Figure-6.5.2.1: Enumeration of rows 

3.2 Measurement of length of longest row 
Measure the length (in normal steps) of longest row of the selected field (Figure-6.5.2.2). 

 
Figure-6.5.2.2: Length of longest row 

3.3 Average number of rows in the breadth of CCE plot 
Average number of rows in the specified breadth of CCE plot is to be workout. Therefore, 
observations of rows in the specified breadth of the CCE plot (5 meters or 10 meters in 
plains and 2 meters in hills) have to be taken at three randomly selected places in the 
selected field. The observations may be taken in the starting, middle and end point of the 
breadth of the selected field. 
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3.4 Determination of random number for random row 
The average number of rows is to be deducted from the total number of rows in the 
selected field and add one. Deduction of average rows is necessary for ensuring that the 
CCE plot must be within the selected field. Addition of one is compulsory for inclusion of 
last row of the selected field in the CCE plot. A random number less than or equal to the 
number obtained after deducting average number of rows workout in the breadth of CCE 
and adding one should be selected using assigned column of random number table.  

Example:  
Let, total number of rows in the selected field is 65 and average number of rows workout 
in the specified breadth (5 meter) of CEE plot is 6. The deduction and addition of rows 
for selection of random number for random row is as under.  

Total number of rows in the selected field  65 

Average number of rows in 5 meter breadth of CCE plot 6 

(Number of rows in the selected field minus Average number of rows in 5 meter 
breadth of CCE plot) + One 

60 

The number obtained after deducting 6 and adding one in total number of rows in the 
selected field is 60. Since 60 is the two digit number, therefore, using assigned column 
number one of two digited random number table, random number 22 is appeared first 
which is less than 60. Thus random number 22 is selected for identifying the random row. 
The random row (22) will be the first row of the CCE plot.  

3.5 Determination of random number for length  
Number of steps in specified length of CCE plot has to be deducted from the length (step) 
of longest row to ensure the whole CCE plot gets accommodate in the selected field. A 
random number which is less than or equal to the length obtained after deducting steps in 
specified length of CCE plot from the length (step) of longest row is to be selected using 
assigned column number of the random number table.   

Example:  
Let, the length of longest row is 115 steps and length of CCE plot is five meter. There are 
seven steps in five meter. The calculation the deduction of steps for selection of random 
number for random row is as under.  

Length of  longest row  in the selected field  (in steps) 115  

Steps in the length of CCE plot 7 

Length (in steps) of  longest row  minus steps in length of CCE plot 108  

The number as obtained after deduction seven steps is 108 which is three digited number, 
therefore, using allotted column number one of three-digit random number table, select a 
random number less than or equal to 108. The number 10 is appeared first which is less 
than or equal to 108, therefore, random number 10 is considered as random step.    
The selected random number pair is (22, 10) for locating south-west corner of the CCE 
plot.  
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3.6 Marking of the CCE plot 
3.6.1 Marking of south-west corner of the CCE plot 
Starting from first row from south west corner of the selected field, count the rows up to 
row number 22 i.e. random row. From the starting point of random row along its length 
moving between the inter-space of selected random row (22) and its preceding row (21) 
by measuring random steps (10) where we reached is the south-west corner “A” of the 
CCE plot (Figure-6.5.2.6.1). This may also be called as first corner or key point of the 
CCE plot. Fix a peg “A” at this point “A” in between the inter-space of the selected row 
(22) and its preceding row (21). 

 
Figure-6.5.2.6.1: SW of the CCE plot (Step-1) 

3.6.2 Marking of second corner of the CCE plot  
Measure 5 meter meters (as per length of CCE plot) from the key point (First corner of 
CCE plot) moving in between random row (22) and its preceding row (21) toward the 
length of row and fix second peg “B” at other corner. It is the second corner of the CCE 
plot (Figure-6.5.2.6.2). 

 
Figure-6.5.2.6.2: Second corner of the CCE plot (Step-2) 

 
 



CROP CUTTING EXPERIMENTS TECHNIQUE FOR CROP YIELD ESTIMATION  

 

15.8 
 

3.6.3 Marking of third corner of the CCE plot  
Moving perpendicular direction to the random row 22 (second corner “B”) towards inner 
side of the selected field start counting random row (22) as first row of the CCE plot and  
end the counting at sixth row (as average number of rows is six). Fix third peg “C” in 
between the inter-space of last row (i.e. 6th) to be included in the CCE plot and its 
succeeding row. The sixth row of the CCE plot is 27th row of the selected field and 28th is 
the succeeding row (Figure-6.5.2.6.3).  
 

 
Figure-6.5.2.6.3: Third corner of the CCE plot (Step-3) 

3.6.4 Marking of fourth corner of the CCE plot  
Start moving from third corner “C” parallel to line “B”-“A” in the direction of Key point 
“A” in between last row i.e. sixth row of CCE plot or 27th and its succeeding row 28th of 
selected field, measure a length 5 meter (as par the length of CCE plot ). The point where 
we reached is the fourth corner of the CCE plot. Fix fourth peg “D” at this point (Figure-
6.5.2.6.4).  

 
Figure-6.5.2.6.4: Fourth corner of the CCE plot (Step-4) 
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3.6.5 CCE plot  
“A”, “B”, “C” and “D” is the four corner of the CCE plot. The number of rows in the 
breadth side between “B” and “C” corner should be equal to the number of rows between 
“A” and “D” corner (i.e. six).  The distance between “A” “B” and “C” “D” corner should 
be equal to the length of CCE plot i.e. 5 meter. The distance of all the sides and diagonal 
should be measured and recorded (Figure-6.5.2.6.5).  
If the CCE plot does not fall wholly within the selected field due to irregular shape of the 
field, reject the random number pair and select a new random number pair for making 
CCE plot. 

 
Figure-6.5.2.6.5: CCE plot (Step-5) 

4.0 Demarcation of CCE plot when crop is sown in lines in two directions 
The crop like tobacco is sown in both the directions in lines. The procedure for making 
CCE plot is slightly differ from the procedure of making the CCE plot when crop is sown 
in one direction in line. Procedure of demarcation of the CCE plot is as under: 

4.1 Enumeration of rows 
Rows are to be enumerated in both the directions i.e. length and breadth from the south-
west corner of the selected field (Figure-6.5.3.1). Suppose 108 rows are in length side and 
65 are in breadth side of the selected field. 

 
Figure-6.5.3.1: Enumeration of rows  
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4.2 Average number of rows  
Average number of rows in the specified length and breadth of CCE plot is to be workout. 
Therefore, observations of rows in the specified length and breadth of the CCE plot (5 x 5 
meters or 10 x10 meters or 10 x 5 meter in plains and 10 x 2 meters in hills) have to taken 
at three randomly selected places in the selected field. The observations may be taken in 
the starting, middle and end point of the length and breadth of the selected field. 

4.3 Determination of random number for random row in the direction of length  
Average number of rows in specified length may be deducted from the total number of 
rows in longer side i.e. length and add one for inclusion of last row in the CCE plot. 
Deduction of average number of rows is essential for ensuring that the whole CCE plot 
gets accommodate in the selected field.  

Example:  
Let, the shape of CCE plot is square having 5 meter length of each side. Suppose, average 
number of rows in 5 meter length are 6 and total number of rows are 108 in the direction 
of length, the deduction and addition of rows for selection of random number for random 
row is as under. 

Total number of rows in the direction of length of selected field 108 

Average rows in 5 meter length of CCE plot 6 

(Total number of rows minus average rows in the length of CCE plot) + one 103 

The number 103 is obtained after deducting average number of rows from total number of 
rows and addition of one. Hence 103 is three digited number, therefore, using assigned 
column number one of three digited random number table, a random number less than or 
equal to 103 is to be selected. The random number 48 is appeared, hence, it is considered 
as selected random number for random row for length side. 

4.4 Determination of random number for random row in the direction of breadth  
Average number of rows in specified breadth may be deducted from the total number of 
rows in shorter side i.e. breadth and add one for inclusion of last row in the CCE plot. 
Deduction of average number of rows is essential for ensuring that the whole CCE plot 
gets accommodate in the selected field.  

Example:  
Let, the shape of CCE plot is square having 5 meter length of each side. Suppose, average 
number of rows in 5 meter breadth is 8 and total number of rows are 65 in the direction of 
breadth, the deduction and addition of rows for selection of random number for random 
row is as under. 

Total number of rows in the direction of breadth of the selected field 65 

Average rows in 5 meter breadth of CCE plot 8 

(Total number of rows minus average rows in the breadth of CCE plot) + one 58 

The number 58 is obtained after deducting average number of rows from total number of 
rows and addition of one. Hence 58 is two digited number, therefore, using assigned 
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column number one of three digited random number table, a random number less than or 
equal to 58 is to be selected. The random number 22 is appeared first, hence, it is 
considered as selected random number for random row for breadth side. 
The random number pair is (48, 22) for locating south-west corner of CCE plot. 

4.5 Marking of the CCE plot 
4.5.1 Marking of south-west corner of the CCE plot 
Starting from south-west corner of the selected field, move towards the direction of length 
of the selected field by counting from row number one and stop at row number 48 which 
is selected as random number for row in the direction of length. From this point, move 
between the inter-space of selected random row (48) and its preceding row (47) towards 
the direction of breadth and perpendicular to the length of the selected field by counting 
from row number one and stop at row number 22 which is the selected as random number 
for row in the direction of breadth. Fix first peg “A” between the interspace of random 
row (22) selected for breadth and the preceding row (21). The point “A” is the south-west 
corner (key point) or first corner of the CCE plot (Figure-6.5.3.5.1). 

 
Figure-6.5.3.5.1: South-West corner of the CCE Plot 

4.5.2 Marking of second corner of the CCE plot  
From the key point “A” move in between the interspace of selected random row (22) and 
preceding row (21) by counting the average number of rows in the length of CCE plot 
(i.e. 6) in the direction of length of the selected field and stop at row  number 6th  which is 
to be included in CCE plot. Row number 48th and 53rd of the selected field is the first and 
6th (last) row, respectively, of the CCE plot.  Fix second peg “B” between the interspace 
of last row (i.e. 6th of CCCE plot or 53rd row of the selected field) and its succeeding row 
number 54th row of the selected field (Figure-6.5.3.5.2). 

 
Figure-6.5.3.5.2: Second Corner of the CCE Plot 
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4.5.3 Marking of third corner of the CCE plot  
From second corner “B” proceed along the breadth of the selected field between the 
interspace of last row of CCE (i.e. 6th row of CCE or 53rd of selected field) and its 
succeeding row (i.e. 54th) by counting the average number of rows workout in 5 meter 
breadth (i.e. 8) and stop at last row (8th) to be included in CCE plot (or row number 29th 
of selected field). Row number 22nd is the first row while 29th is 8th (last) row of the CCE 
plot in the direction of breadth. Fix third peg at “C” point between the interspace of last 
row (8th) of CCE plot (or row number 29 of selected field) and its succeeding row (row 
number 30). This is the third corner of CCE plot (Figure-6.5.3.5.3). 

 
Figure-6.5.3.5.3: Third corner of the CCE plot 

4.5.4 Fourth corner of the CCE plot  
Proceed from third corner “C” along the interspace of 8th (last) row (i.e. row number 29 
of selected field) of CCE plot and its succeeding row (i.e. row number 30 of selected 
field) parallel to line “A” - “B” and towards south-west corner of the CCE plot by 
counting average number of rows in the length of CCE plot (i.e. 6). We reached back 
between the interspace of selected random row 48 and preceding row number 47 in the 
direction of length. This is the fourth corner of CCE plot. Fix the fourth peg “D” at this 
point (Figure-6.5.3.5.4).  

 
Figure-6.5.3.5.4: Fourth corner of the CCE plot 

4.5.5 CCE plot 
“A” “B” “C” “D” is the four corner of the CCE plot. The number of rows between A and 
B corner should be equal to the number of rows between C and D corner (i.e. 6) in length 
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side while in the breadth side rows between B and C corner should be equal to the 
number of rows between D and A (i.e. 8). The distance of all the sides and diagonal 
should be measured and recorded (Figure-6.5.3.6.5).  
If the CCE plot does not fall wholly within the selected field due to irregular shape of the 
field, reject the random number pair and select a new random number pair for making 
CCE plot. 

 
Figure-6.5.3.5.5: CCE plot 

5.0 Harvesting of the crop of CCE plot 
The boundary of the CCE plot should be demarcated a rope/string.  The length of 
rope/string should not be increase on stretching. A well stretch rope/string should be tied 
around the tall and straight pegs firmly fixed on the ground and lowered gradually to the 
ground level for demarcating the boundary of the CCE plot. The decision for harvesting 
the plants of CCE plot is based on the position of roots. The plants on the boundary line 
of the CCE plot will be harvested only if the roots are more than half inside the CCE plot. 
All plants within the CCE plot have to be harvested and gathered carefully. The harvested 
pants should be bundled with coloured rope, marked properly with full identification 
particulars by permanent marker on tag and transported to proper place for 
drying/threshing/rotting/crushing operation etc. No plant and ear head should be fallen 
during harvesting, bundling and transporting. Weight of each bundle should be taken to 
the nearest possible weighing unit by a perfect weighing balance / machine.  

 
5.0 Harvesting of the CCE crop 
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6.0 Threshing of the crop of CCE plot 
The harvested CCE crop should be spread on a piece of hessian cloth for drying in sun 
light. After proper drying the crop, it should be threshed carefully as per the usual 
method. 

 
6.0 Threshing the crop of CCE plot 

 
7.0 Winnowing and cleaning of threshed crop of CCE plot 
Grains from straw should be separated by winnowing with the help of wind, winnowing 
fan and other cleaning tool. The produce should be free from seed of other crops, weed 
seed, dust particles, stone, husk etc.  

 
7.0 Winnowing and cleaning 

 

8.0 Weighing of the wet produce (Wet weight) 
Weight of clean produce should be taken just after its winnowing/ cleaning. At this time 
most of the crops have excess moisture, therefore, this weight is called as wet weight. 
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Weight should be taken to the nearest possible weighing unit by a perfect weighing 
balance / machine. After weighing, the produce should be returned to the farmer.  

 
8.0 Weighing of the wet produce 

 

9.0 Drying of produce (Driage experiment) 
Driage experiments are necessary to obtain final estimates of yield in terms of dry 
produce. Therefore, driage experiments are conducted, if the produce has excess 
moisture. Sample of recommended quantity of the produce has to be taken in cloth bag 
and kept for drying in the sun light as per local practice. Driage experiments for different 
crops are to be conducted by the district statistical officer and selected out of the CCE 
supervised by the district level officers at the district level. The driage experiments are 
conducted in respect of 15 per cent of the experiments planned for the specific crops or 
subject to a minimum four experiments per crop.  
Generally, one kilogram sample of harvested produce should be taken at random for 
drying by the District Statistical Supervisor. If, the produce obtained from the CCE plot is 
less than one kilogram, the entire produce is to be taken for drying.  In the case of 
sugarcane, the final produce is expressed in terms of cane only while in the case of cotton, 
the final produce is expressed in terms of lint. The cotton (Kapas) is converted into lint by 
using ginning percentage (kapas to lint) which is obtained from the ginning factories. 
In case of jute and similar crop, the labelled bundles should be left in the field or any 
proper place for drying the leaves for one or two days. After that the bundles should be 
dipped under the water in the pond or pit for 10 to 15 days for rotting as per local 
practice.  The date for extracting the fibre may be fixed with the consultation of the 
farmer. The fibre should be extracted, washed, cleaned properly and kept for drying in the 
sun light as per local practice. When the fibre dried properly, the weight of dry fibre 
should be taken to the nearest possible weighing unit up to ten gram.  

10.0 Weighing of dry produce (Dry weight) 
Weight of dry produce should be taken to the nearest possible weighing unit by a perfect 
weighing balance / machine after proper sun drying. This weight is called as dry weight 
of the produce. The produce should be returned to the farmer.  
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1. Introduction 
Consider a survey of a rare and endangered bird species in which observers record the 
number of individuals of the species seen or heard at sites or units within a study area. At 
many of the sites selected for observation, zero abundance may be observed. But wherever 
substantial abundance is encountered, observation of neighbouring sites is likely to reveal 
additional concentrations of individuals of the species. Similar patterns of clustering or 
patchiness are encountered with many other types of animals from whales to insects, with 
vegetation types from trees to lichens, and with mineral and fossil fuel resources. A related 
pattern is found in epidemiological studies of rare, contagious diseases. Whenever an 
infected individual is encountered, addition to the sample of closely associated individuals 
reveals a higher than expected incidence rate. In such situations, the field workers may feel 
the inclination to depart from the preselected sample plan and add nearby or associated units 
to the sample. 
Adaptive cluster sampling refers to designs in which an initial set of units is selected by some 
probability sampling procedure, and, whenever the variable of interest of a selected unit 
satisfies a given criterion, additional units in the neighbourhood of that unit are added to the 
sample. Adaptive cluster sampling provides a means of taking advantage of clustering 
tendencies in a population, when the locations and shapes of the clusters cannot be predicted 
prior to the survey. Thompson (1990, 1991a, 1991b) described some designs in which, 
whenever the observed value of a selected unit satisfies a condition of interest, additional 
units are added to the sample from the neighbourhood of that unit. Many purposes may be 
served by such a design such as increasing the “yield” of interesting units. For such surveys, 
Birnbaum and Sirken (1965) obtained unbiased estimators of the Hansen and Hurwitz (1943) 
type, in which observations are divided by draw-by-draw selection probabilities, and of the 
Horvitz and Thompson (1952) type, in which observations are divided by inclusion 
probabilities. 
The designs given by Thompson (1990) are related to network sampling in that selection of 
certain units may lead to observation of others. Because of the way the decisions to observe 
additional units depend adaptively on the observed values of the variable of interest, 
however, the selection and inclusion probabilities are not in general known for all units in the 
sample. Modifications must, therefore, be made in estimators of the Hansen-Hurwitz or 
Horvitz-Thompson types to obtain unbiased estimators.  
 

2. Sampling Design 
The basic idea of the adaptive cluster sampling design is illustrated in Figure1. Suppose that 
the interest lies in studying a particular weed that grows in strawberry fields. The weed is not 
particularly abundant, but serves as a host plant for a disease of strawberries. The purpose of 
the estimation of the total (and average) number of weeds in the field can be achieved using 
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adaptive cluster sampling. The field is divided using a grid system to produce 400 square 
contiguous sampling units. An initial random sample of 10 units is shown in Figure 1a. 
Whenever one or more of the objects is observed in a selected unit, the adjacent neighbouring 
units to the left, right, top and bottom are added to the sample. When this process is 
completed, the sample consists of 45 units, shown in Figure 1b. Neighbourhoods of units 
may be defined in many ways other than the spatial proximity system of this example. 
In the designs considered here, the initial sample consists of a simple random sample of n1 
units, selected either with or without replacement. As in the usual finite population sampling 
situation, the population consists of N units with labels 1, 2,. . ., N and with associated 
variables of interest y ={y1, y2, . . ., yN}. The sample s is a set or sequence of labels 
identifying the units selected for observation. The data consists of the observed y-values 
together with the associated unit labels. The object of interest is to estimate the population 

mean 
N

i
i 1

1 y
N =

µ = ∑
 
or total Nµ  of the y-values.  

A sampling design is a function p(s|y) assigning a probability to every possible sample s. In 
designs such as those described here, these selection probabilities depend on the population 
y-values. It is assumed that for every unit i in the population a neighbourhood Ai is defined, 
consisting of a collection of units including i. These neighbourhoods do not depend on the 
population y-values. In the spatial sampling example, the neighbourhood of each unit consists 
of a set of geographically nearest neighbours, but more elaborate neighbourhood patterns are 
also possible, including a  larger contiguous set of  units or a non-contiguous set such as a 
systematic  
 

                          
Figure 1. Adaptive cluster sampling to estimate the number of point-objects in a study 

region of 400 units. An initial random sample of 10 units is shown in (a). Adjacent 
neighbouring units are added to the sample whenever one or more of the objects of the 
population are observed in a selected unit. The resulting sample of 45 units is shown in 

(b). 

a. b. 
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Grid pattern around the initial unit. In other sampling situations, neighbourhoods may be 
defined by social or institutional relationships between units. The neighbourhood relation is 
symmetric: if unit j is in the neighbourhood of unit i, then unit i is in the neighbourhood of 
unit j. 

 
Figure 2.  Neighbourhood for a sampling unit in the strawberry field study. 

The condition for additional selection of neighbouring units is given by an interval or set C 
in the range of the variable of interest. The unit i is said to satisfy the condition if iy C∈ . In 
the examples, a unit satisfies the condition if the variable of interest yi is greater than or equal 
to some constant c, that is,  C={ y : y ≥ c }. 
When a selected unit satisfies the condition, all units within its neighbourhood are added to 
the sample and observed, some of these units may in turn satisfy the condition and some may 
not. For any of these units that do satisfy the condition, the units in its neighbourhood are 
also included in the sample, and so on. 
Consider the collection of all of the units that are observed under the design as a result of 
initial selection of unit i. Such a collection, which may consist of the union of several 
neighbourhoods, will be termed as cluster when it appears in a sample. Within such a cluster 
there is a sub-collection of units, termed as a network, with the property that selection of any 
unit within the network would lead to inclusion in the sample of every other unit in the 
network. In the example of Figure 1, inside either of the obvious clusters of units in the final 
sample, the sub-collection of units with one or more of the point-objects forms a network. 
Any unit not satisfying the condition but in the neighbourhood of one that does is termed an 
edge unit. Although selection of any unit in the network will result in inclusion of all units in 
the network and all associated edge units, selection of an edge unit will not result in the 
inclusion of any other units. It is convenient to consider any unit not satisfying the condition 
a network of size one, so that, given the y-values, the population may be uniquely partitioned 
into networks. 
When the initial sample of n1 units is selected by simple random sampling without 
replacement, the n1 units in the initial sample are distinct because of the without-replacement 
sampling, but the data may nevertheless contain repeat observations due to selection in the 
initial sample of more than one unit in a cluster. The unit i will be included in the sample 
either if any unit of the network to which it belongs (including itself) is selected as part of the 
initial sample or if any unit of a network of which unit i is an edge unit is selected. Let mi 
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denote the number of units in the network to which unit i belongs, and let ai denote the total 
number of units in networks of which unit i is an edge unit. Note that if unit i satisfies the 
criterion C then ai = 0, whereas if unit i does not satisfy the condition then mi = 1. The 
probability of selection of unit i on any one of the n1 draws is ( )i i ip m a N= + . The 
probability that unit i is included in the sample is 

 i i
i

1 1

N m a N
1

n n
− −   

α = −    
   

                                                                      (2.1) 

When the initial simple is selected by simple random sampling with replacement, repeat 
observations in the data may occur due either to repeat selections in the initial sample or to 
initial selection of more than one unit in a cluster. With this design, the draw-by-draw 
selection probability is ( )i i ip m a N= + and the inclusion probability is 

( ) 1n
i i1 1 pα = − −                                                                                          (2.2) 

With either initial design, neither the draw-by-draw selection probability pi nor the inclusion 
probability iα can be determined from the data for all units in the sample, because some of 
the ai may be unknown. 
 

3. Estimators for Population Parameters 

Classical estimators such as the sample mean y , which is an  unbiased estimator of the 
population mean under a non-adaptive design such as simple random sampling, or the mean 
of the cluster means y , which is unbiased under cluster sampling with selection probabilities 
proportional to cluster sizes, are biased when used with the adaptive designs described 
earlier. These biases are demonstrated later in example. In this section several estimators that 
are unbiased for the population mean under the adaptive designs are given.  
The expected value of an estimator t is defined in the design sense, that is, 

sE[t] t .p(s | y)=∑ , where ts is the value of the estimate computed when sample s is selected, 
p(s|y) is the design, and the summation is over all possible samples s. The sampling strategy 
i.e. the estimator together with the design, is design unbiased for the population mean if 

N
i

i 1

1E[t] y
N =

= ∑  for all population vectors y. 

3.1 The Initial Sample Mean 
If the initial sample in the adaptive design is selected by simple random sampling, with or 
without replacement, the mean, y  of the n1 initial observations is an unbiased estimator of 
the population mean. This estimator ignores all observations in the sample other than those 
initially selected. 
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3.2 A Modified Hansen-Hurwitz Type of Estimator 
For sampling designs in which n units are selected with replacement and the probability pi of 
selecting unit i on any draw is known for all units, the Hansen-Hurwitz estimator, in which 
each y-value is divided by the associated selection probability and multiplied by the number 
of times the unit is selected, is an unbiased estimator of the population mean. 
With the adaptive cluster sampling design, the selection probabilities are not known for every 
unit in the sample. An unbiased estimator can be formed by modifying the Hansen-Hurwitz 
estimator to make use of observations not satisfying the condition only when they are 
selected as part of the initial sample. Let kΨ  denote the network that includes unit k, and let 
mk be the number of units in that network. (Recall that a unit not satisfying the criterion is 
considered a network of size one.) Let *

ky   represent the average of the observations in the 
network that includes the kth unit of the initial sample, that is,  

k

*
k j

k j

1y y
m ∈Ψ

= ∑ .  

The modified estimator is  

 
1n

*
kHH 1 k 1

1t y
n∗

=
= ∑ .                                                                                  …(3.2.1) 

The variance of tHH* is 
N

* 2
HH* i

1 i 1

1 1 1V ar (t ) (y )
n N N 1 =

 
= − −µ  − 

∑ ,                                           …(3.2.2) 

if the initial sample is selected without replacement and  
N

* 2
HH* i

1 i 1

1 1Var (t ) (y )
n (N 1) =

= −µ
− ∑                                                      …(3.2.3) 

if the initial sample is selected with replacement.  
An unbiased estimator of this variance is  

  
1n

* 2
HH* k HH*

1 1 k 1

1 1 1V̂ar (t ) (y t )
n N (n 1) =

 
= − −  − 

∑ ,                              …(3.2.4) 

if the initial sample is selected without replacement and  

 
1n

* 2
HH* k HH*

1 1 k 1

1 1V̂ar (t ) (y t )
n (n 1) =

= −
− ∑                                           …(3.2.5) 

if the initial sample is selected with replacement. 
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3.3 A Modified Horvitz-Thompson Type of Estimator 

For sampling  designs in which the probability iα  that unit i is included in the sample is 
known for every unit, the Horvitz-Thompson estimator, in which each y-value is divided by 
the associated inclusion probability, is an unbiased estimator of the population mean.  
With the adaptive designs here, the inclusion probabilities are not known for all units 
included in the sample. An unbiased estimator can be formed by modifying the Horvitz-
Thompson estimator to make use of observations not satisfying the condition only when they 
are included in the initial sample. Then the probability that a unit is used in the estimator can 
be computed, even though its actual probability of inclusion in the sample may be unknown. 
If the initial sample is selected by simple random sampling without replacement, define 

 k*
k

1 1

N m N
1

n n
−   

α = −   
   

       ,                                                                (3.3.1) 

where mk is the number of units in the network that includes unit k. If the initial selection is 
made with replacement, define 1n*

k k1 (1 m N)α = − − . For any unit not satisfying the 
condition, mk = 1.  
Let the indicator variable Jk be 0 if the kth unit in the sample does not satisfy the condition 
and was not selected in the initial sample; otherwise, Jk=1. The modified estimator is 

*
HT* k k k

k 1

1t y J /
N

ν

=
= α∑ ,                                                                            (3.3.2) 

where ν  is the number of distinct units in the sample. 
To obtain the variance of tHT*, it will be most convenient to change notation to deal with the 
networks into which the population is partitioned, rather than individual units. Let ς  denote 
the number of networks in the population and let jΨ  be the set of units comprising the jth 
network. Let mj be the number of units in network j. The total of the y-values in network j 
will be denoted by 

j

j i
i

y y
∈ψ

= ∑ . 

The probability *
iα  that the unit i is used in the estimator is the same for all units within a 

given network j; this common probability will be denoted by jπ . The probability jhπ  that 
the initial sample contains at least one unit in each of the networks j and h is 

 j j hh
jh

1 11 1

N m N m mN m N
1

n nn n

 − − −    −    π = − + −                  
,                   (3.3.3) 

when the initial sample is selected without replacement and 

 { } { } ( ){ } 11 1
nn n

jh j h j h1 1 m N 1 m N 1 m m N π = − − + − − − +  
 ,         (3.3.4) 
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when the initial sample is selected with replacement. 

With the convention that jj jπ = π , the variance of the estimator tHT* is 

 ( ) ( )HT* j h jh j h j h2
j 1h 1

1V ar (t ) y y
N

ς ς

= =
= π − π π π π∑∑                                 (3.3.5) 

An unbiased estimator of the variance of tHT* is 

 ( ) ( )HT*) k m km k m k m km2
k 1m 1

1V̂ar (t y y
N

κ κ

= =
= π − π π π π π∑ ∑ ,                  (3.3.6) 

where the summation is over the κ distinct networks represented in the initial sample. 

3.4. A Small Example 
In this section, the sampling strategies are applied to a very small population to shed light on 
the computations and properties of the adaptive strategies in relation to each other and to 
conventional strategies. The population consists of just five units, the y-values of which are 
{1, 0, 2, 10, 1000}. The neighbourhood of each unit includes all adjacent units. The condition 
is defined by C = {y : y ≥5}. The initial sample size is n1 = 2. 
With the adaptive design in which the initial sample is selected by simple random sampling 
without replacement, there are 5C2 =10 possible samples, each having probability 1/10. The 
resulting observations and the values of each estimator are listed in Table 1. 
In this population, the 4th and 5th units, with the y-values 10 and 1000, respectively, form a 
network, and the 3rd, 4th and 5th units, with y-values 2, 10 and 1000, respectively, form a 
cluster. In the fourth row of the table, the 1st and 5th units, with y-values 1 and 1000, were 
selected initially; since 1000 ≥ 5, the single neighbour of the 5th unit, having y-value 10, is 
added to the sample. Since y-value 10 also exceeds 5, the neighbouring unit with y-value 2 is 
also added to the sample. 
Table 1. All possible outcomes of Adaptive Cluster Sampling for a population of five units 

with y-values 1, 0, 2, 10 and 1000 in which the neighbourhood of each unit consists 
of itself plus adjacent units. 

 

Observations 1y  tHH* tHT* y  y  

1, 0 0.50 0.50 0.50 0.50 0.50 

1, 2 1.50 1.50 1.50 1.50 1.50 

1, 10; 2, 1000 5.50 253.00 289.07 253.25 169.67 

1, 1000; 10, 2 500.50 253.00 289.07 253.25 169.67 

0, 2 1.00 1.00 1.00 1.00 1.00 
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0, 10; 2, 1000 5.00 252.50 288.57 253.00 168.67 

0, 1000; 10, 2 500.00 252.50 288.57 253.00 168.67 

2, 10; 1000 6.00 253.50 289.57 337.33 337.33 

2, 1000; 10 501.00 253.50 289.57 337.33 337.33 

10, 1000; 2 505.00 505.00 288.57 337.33 337.33 

      

Mean 202.6 202.6 202.6 202.75 169.17 

Bias 0 0 0 0.15 -33.43 

MSE 59615 22862 17418.4 18660 18086 

 
The computations for the estimators are- tHH* = (1 + (10 + 1000) / 2) / 2 = 253 and tHT* = ( 

1/0.4 + 10/0.7 + 1000/0.7) / 5 = 289.07, in which *
1

4 5
1 0.4

2 2
   

α = − =   
   

 and 

* *
2 3

3 5
1 0.7

2 2
   

α = α = − =   
   

. The classical estimator y = 253.25 is obtained by averaging 

all four observations in the sample, and y = (1 + (10 + 2 + 1000) / 3) / 2 = 169.67. 

The population mean is 202.6 and the population variance (defined with N-1 in the 
denominator) is 198718. From the Table 1 it is clear that the unbiased adaptive strategies 
indeed have mean 202.6 and the estimators y  and y , used with the adaptive design, are 
biased. 
From the variances and MSEs given in the last row of the Table 1, it is clear that for this 
population, the adaptive design with the estimator tHT* has the lowest variance among the 
unbiased strategies and all of the adaptive strategies are more efficient than simple random 
sampling. 
 

5. Conclusions 
Adaptive cluster sampling appears to be an effective method for sampling from populations 
with rare events as well as aggregation tendencies in these rare events. Unbiased estimators 
can be obtained by modifying the estimators of the Hansen-Hurwitz or Horvitz-Thompson 
types in case of adaptive cluster sampling. As per the example shown here, the adaptive 
Horvitz-Thompson estimator tHT* clearly outperformed its Hansen-Hurwitz counterpart tHH* 
and all of the adaptive strategies are more efficient than simple random sampling.  
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1. Introduction 
The method of Simple Random Sampling (SRS) is the most commonly used method of 
sampling. The reason lies in its simplicity in selection as well as mathematical derivation. 
The probability of selection of every sample in the method of SRS is equal. Further, the units 
are selected one by one and the probability of selection of every unit of population in the 
sample is same. 
The selection of units in the sample following SRS is purely random. Thus, it may happen 
that all the units selected in the sample may belong to one type or representing some part of 
the population only. Thus, one may end up with a sample where certain parts of the 
population are over represented while some other parts are under represented. Or in other 
words, the selected sample may not be representative enough resulting in misleading 
inferences about the population under study. An improved sampling mechanism which is 
capable of producing representative samples is, therefore, very much a practical necessity. 
In agricultural, environmental and ecological sampling one may encounter a situation where 
the exact measurement (or quantification) of a selected unit is either difficult or expensive in 
terms of time, money or labour, but where the ranking of a small set of selected units 
according to the character of interest can be done with reasonable success on the basis of 
visual inspection or any other rough method not requiring actual measurement. 
Suppose the objective is to estimate the distribution of volume of trees in a forest. If the 
forest were believed to be homogenous, a simple random sample could be taken by choosing 
the nearest tree to each of a set of randomly selected coordinates across the region of the 
forest. If homogeneity were less believable, the forest could be grided and trees randomly 
selected from within each grid-cell. Natural forests, however, are not so conveniently 
arranged. Stratification, clustering and various other area sampling schemes could be 
considered in such a situation.  
Characteristics of these sampling mechanisms are simple random sampling at the ultimate 
stage of sampling. Replacement of SRS in the ultimate smallest group by some other 
efficient sampling mechanism may lead to further increase in the precision of sample 
estimates. 
In statistical settings where actual measurements of the sample observations are difficult or 
costly or time consuming or destructive etc. but acquisition and subsequent ranking of the 
potential sample data is relatively easy, improved methods of statistical inference can result 
from using Ranked Set Sampling (RSS) technique. In what follows, we describe the method 
of RSS. 
Consider the example explained earlier. Select two trees randomly and make judgement with 
the help of eyes about the content of wood. Mark the tree having lesser wood content and 
discard the one having higher wood content. Next, select two more trees, make judgement 
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through eyes and mark the tree having higher wood content and discard the other one. Repeat 
the procedure of alternately selecting the tree having lesser wood content and the other 
having higher wood content 25 times. Thus, out of 100 randomly selected trees only 50 are 
retained. Out of these 50 trees, 25 are from a stratum of trees generally having lesser wood 
content and the other 25 are from a stratum of trees having higher wood content. These 50 
kept trees constitute the Ranked Set Sample. The sample so selected is expected to contain 
trees of almost all the sizes. Thus, it is likely to provide a better representation of trees in the 
population as compared to the method of SRS. 
In situations where visual inspection is not directly available, ranking can sometimes be done 
on the basis of a covariate that is more accessible requiring less costs than, but correlated 
with, the character of interest. Thus, if we are interested in the volumes of trees, we may use 
the ranking by diameter to approximate the ranking by volume. This procedure is called as 
ranking using concomitant variables. This was first discussed by Stokes (1977) and referred 
it as “ranked set sampling with concomitant variables”. 

2. Method of RSS 
The RSS procedure with equal allocation involves randomly drawing m2 units from a 
population with mean µ and a finite variance 2σ  and then randomly partitioning them into m 
equal-sized sets with set size m. The units are then ranked within each set with respect to 
other than variable of interest. Here, ranking of the units could be based on visual inspection, 
judgement, auxiliary information or by some other relatively inexpensive methods not 
requiring actual measurement of the variable of interest. The unit receiving the smallest rank 
is accurately quantified from the first set, the unit receiving the 2nd smallest rank is accurately 
quantified from the 2nd set, and so forth, until the unit with largest rank is accurately 
quantified from the mth set. This constitutes one cycle. This procedure involves the 
measurement of m units out of the m2 originally selected units. The entire cycle is replicated 
r times until altogether n = mr observations have been quantified out of m2r originally 
selected units. These n quantified units constitute the ranked set sample. 
Example: Consider the set size m = 3 with r = 4 cycles. This situation is illustrated in figure 
1, where each row denotes a judgment-ordered sample within a cycle, and the units selected 
for quantitative analysis are circled. Here, 36 units have been randomly selected in 4 cycles; 
however, only 12 units are actually measured to obtain the ranked set sample for quantitative 
analysis. 

Cycles 
Rank 

1                      2                       3 

1 
Θ                      .                        . 
.                      Θ                       . 
.                       .                        Θ 
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Figure 1: A ranked set sample with set size m = 3 and no. of sampling cycles r = 4. 

 
3. RSS Estimator and its Variance 
Let us consider only one cycle first. Let, X11, X12, …, X1m, X21, X22, …, X2m, …, Xm1, 
Xm2, …, Xmm be independent random variables all having the same cumulative distribution 
function F(x). Also let Xi(1), Xi(2), …, Xi(m) be the corresponding order statistics of Xi1, Xi2, …, 
Xim (for all i=1,2,…,m). Then X1(1), X2(2), …, Xi(i), …, Xm(m) is the ranked set sample, since Xi(i) 
is the ith order statistics in the ith sample. 
 
The values of Xij for randomly drawn units can be arranged in the following diagram: 
 
       Set 
        1                    X11            X12           …               X1m 
        2                    X21            X22           …               X2m 
        .  
        . 
        . 
       m                   Xm1            Xm2          …               Xmm 

 

 
 
 
 

2 
Θ                      .                        . 
.                      Θ                       . 
.                       .                        Θ 

3 
Θ                      .                        . 
.                      Θ                       . 
.                       .                        Θ 

4 
Θ                      .                        . 
.                      Θ                       . 
.                       .                        Θ 
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After ranking the units appear as shown below: 
 
      Set                                Order statistics        
        1                    X1(1)           X1(2)           …              X1(m) 
        2                    X2(1)           X2(2)           …              X2(m) 
        .  
        . 
        . 
       m                   Xm(1)           Xm(2)          …             Xm(m) 

 
The quantified units are presented as given below: 
 
      Set                       
        1                  X1(1)               *              …                * 
        2                   *                X2(2)            …                *           
        .  
        . 
              m                   *                   *              …             Xm(m)         

The mean of ranked set sample is denoted by (m)X  where,  

m
(m) i(i)

i 1

1X X
m =

= ∑  

For convenience, i(i)X  can also be written as (i:m)X which denotes the i:mth order statistics 
from the population, and the parenthesis are used to surround the subscript to show that 

(i:m)X  are independent unlike the usual i:mth order statistics denoted by i:mX  which are 
positively correlated.  
Now, 

          
m

(m) (i:m)
i 1

1X X
m =

= ∑  

so that, 
m1E[X ] = E[X ]= μ(m) (i:m)m i=1
∑  
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This shows that (m)X  is an unbiased estimator of population mean, µ. 

This estimator can be compared with the sample mean based on m iid quantifications based 
on usual order statistics. The latter can be written as, 

m
i:m

i 1

1X X
m =

= ∑  

where i:mX  are the order statistics of the m quantifications. Since, as pointed out, the 

i:mX are positively correlated, it follows that (m)X  is more efficient than X for estimating 
µ. In essence, the RSS quantifications (i:m)X  are more regularly spaced with less clustering 
than is simple random sample of size m. 
When the whole process of drawing random sample is repeated r times, the ith order statistics 
from ith sample in jth cycle will be denoted by (i:m) jX , i=1,2,…,m and j=1,2,…,r. Here, these 

are not iid in general, but for a given value of i these are so with (i:m) j (i:m)E[X ]=µ  and 
2

(i:m) j (i:m)V[X ]=σ  in the absence of ranking error. The estimator, RSSµ̂ , of population mean, 
µ, is defined as follows: 

RSSµ̂ = (m)rX  =
m r

(i:m) j
i 1 j 1

1 X
mr = =
∑∑                                                        ...........(1)    

Also if, (i:m)µ̂  = 
r

(i:m) j
j 1

1 X
r =
∑  then, 

RSSµ̂  = (m)rX  = 
m

(i:m)
i 1

1 ˆ
m =

µ∑ . 

Now,  

         
m r m r

RSS (m)r (i:m) j (i:m)
i 1 j 1 i 1 j 1

1 1ˆ E[ ]=  E[X ] E[X ]
mr mr= = = =

µ = = µ = µ∑∑ ∑∑  

Hence, RSSµ̂  is unbiased estimator of population mean, µ. 

The variance of RSSµ̂  is given by, 

2m (i:m)
RSS (m)r

i 1

1ˆV[ ] V[X ]
mr m=

σ
µ = = ∑                              ………….(2) 
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An equivalent expression of variance is given by 
m

2 2
RSS (i:m)

i 1

1 1ˆV[ ] [ { } ]
mr m =

µ = σ − µ −µ∑                    ………….(3) 

where 2σ  denotes the population variance. 
Ranked Set Sampling works by creating an “artificially” stratified sample. RSS provides a 
more precise estimator of population mean than SRS and it is also more cost efficient in a 
given situation. This is due to the fact that RSS results in a sample in which units are more 
evenly spaced. Since the units in RSS are more evenly spaced than SRS, the variance of RSS 
estimates is expected to be less than SRS estimates. 
 

4. Relative Precision of the RSS Estimator of Population Mean Relative to the SRS 
Estimator and its Estimator 

The relative precision, (RP) of RSS estimator, RSSµ̂ , as compared with simple random 
sample (SRS) estimator, SRSµ̂ , with same sample size, n, is computed as follows: 

SRS

RSS

ˆV( )RP
ˆV( )
µ

=
µ

 

Here, SRS estimator, SRSµ̂ , is based on a random sample of n = mr observations and not a 
random sample of m2r observations. This is because the cost of acquiring and ranking 
samples is not taken into account, but only the cost of quantification is considered. Therefore, 

2
SRSˆV( ) mr

σµ =                                                                                      ......(4) 

RP is given by, 

           SRS
mRSS (i) 2

i 1

ˆV( ) 1RP
ˆV( ) 11 ( )

m =

µ
= =

µ τ
−

σ∑
            ..(5) 

where, (i) (i:m)τ =µ −µ .  

An equivalent and useful measure of RP are relative cost (RC) and relative savings (RS). 
These are defined as: 

1RC and RS 1 RCRP= = −  

In this context, the relative savings (RS) is given by, 
m (i) 2

i 1

1RS ( )
m =

τ
=

σ∑                                                                                  ......(6) 
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Since this expression is positive, RSS is always more cost efficient than SRS with same 
number of observations. 

McIntyre (1952) and Takahasi and Wakimoto (1968) showed that m 11 RP
2
+

≤ ≤  and so, 

m 10 RS
m 1
−

≤ ≤
+

.  
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1. Introduction 
Statistical tools can be applied to data sets to derive meaningful inferences, which are then 
utilized for various purposes. For instance, governments rely on these inferences to shape 
policies aimed at enhancing public welfare, while marketing firms analyze data from 
consumer surveys to refine their strategies and improve customer services. This data is 
typically gathered through sample surveys, which are conducted globally by both 
governmental and non-governmental organizations. In India, for example, the National 
Sample Survey Organization carries out such surveys. Sampling theory provides essential 
tools and methods for data collection, ensuring alignment with the intended objectives and 
the characteristics of the target population. Information can be gathered in two primary ways: 
through sample surveys or complete enumeration. Sample surveys focus on collecting data 
from a subset of the population, while a census involves gathering information from the 
entire population. Certain surveys, such as economic and agricultural surveys, are carried out 
on a regular basis, providing ongoing insights. 
In sample surveys, sampling frame provide access to the elements of finite population of 
interest. The sampling frame refers to the list of all the units of the population to be surveyed. 
Each unit in the frame has specific identification details, ensuring that all elements can be 
accurately tracked and sampled. For instance, in a household-based survey, the sampling 
frame would include all households, with details such as the head of the household's name or 
the house address to ensure proper identification. In a study of crop yield, the sampling frame 
might consist of a list of all commercial farms in a region that grow a specific crop, with 
details such as farm location, farm size, and the crop being cultivated. This frame would 
allow researchers to survey a representative sample of farms, helping to obtain insights into 
the broader agricultural landscape in that region. In forestry, the sampling frame could be 
constructed by listing all the farms or forestry units in a specific region or a frame that lists 
all managed forest plots, identified by their plot number or geographic location, to study 
forest health, biodiversity, or timber production. 

 

2. Sampling Frames 
Sampling frames can be broadly categorized into two main types: list frames and area frames. 
List frame is the exhaustive list of units in the survey population (e.g. a list of all agricultural 
holdings, a list of farm operators involved in agricultural activities). On the other hand, an 
area frame is set of geographical unit which may be either points, transects or segments of 
land. For examples, segments with physical boundaries: a river, a sequence of mountain 
peaks, etc. Both types of frames are essential for ensuring a structured and effective sampling 
process in various surveys. 
2.1 List Frame: A list frame is a comprehensive enumeration of individuals, households, 
institutions, or other units within a population that can be sampled. In agricultural statistics, 
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list frames consist of lists of farms and/or households, which are typically derived from 
agricultural or population censuses and/or administrative data. The ultimate sampling units 
are lists of names of holders or agricultural households (Global Strategy, 2015). Typically, 
the sampling unit from the list frame is a name of a farm operator, while the reporting unit is 
the holding operated by the name.  

Advantages of List Frame: 
 Easy to use 
 Enable in-depth analysis of alternative sampling designs 
 Typically more cost-effective than constructing area frames 
 A key advantage of list frames is the availability of ancillary information for 

improving sampling designs and estimators 

Disadvantages of List Frame: 
 The relationship between frame units and target population units, as well as issues 

related to multiplicity, and their impact on the inferences drawn 
 Imperfections in the list frame, such as under coverage or over coverage 
 The necessity of maintaining and regularly updating the list frame 

 
2.2 Area Frame: An area frame is a set of land elements, which may be either points or 
segments of land, that geographically cover a target population (e.g. agricultural land). The 
sampling process can occur in one or more stages, involving the selection of land segments or 
points. Information is then gathered directly from these land elements through observations 
or measurements, as well as details about farming activities associated with the land, 
typically collected via interviews with the landholders. 

Advantages of Area Frame: 
 Ensures complete coverage of the target population 
 Remains stable over extended periods with minimal maintenance costs 
 Enables the adoption of efficient sampling designs based on the survey variables and 

type of area frame (AF) 
 The ability to collect data through direct observation significantly reduces biases 

associated with the reliability of farmers' responses regarding cultivated areas or 
yields. 

 When the same points or segments are surveyed annually, area frames facilitate 
monitoring of land conditions and inventorying of natural resources. 

 Technological tools, such as aerial photographs, remote sensing, satellite images, 
GPS, and GIS, can enhance the creation and implementation of area frames in 
surveys. 

Disadvantages of Area Frame: 
 The initial cost of constructing an area frame can be high. 
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 Area sampling frames are often less effective for items not closely related to 
cultivated land use, such as specialty or rare crops. Sampling errors, compared to list 
frames, may be higher for rare items. 

 The method is also less representative for small areas and crops typically grown on 
small farms, such as tobacco, vegetables, orchards, and vineyards. 

 Poor road infrastructure and access limitations, making it hard to reach certain 
segments. 

 Challenges in locating respondents and confirming the existence of households or 
farm headquarters. 

 Practical issues like farmers living far from their holdings and determining whether a 
farm should be included in a segment when segments are close to one another.  

 Variables such as livestock or large farms may present additional challenges when 
using area frames. Surveying farms with livestock that use common pastures, 
particularly for nomadic livestock, is difficult. 

 Linking selected points to specific farmers can be problematic. 
 

3. Multiple Frame Surveys 
Sampling frame is a device which is used to obtain observational access to the elements of 
finite population of interest. In most of the surveys, it is assumed that sampling frame is 
complete and up to date, but in reality, sometimes, it is difficult for a single sampling frame 
to include the entire population of interest and also it is expensive. As a result, multiple frame 
surveys are becoming more common. In multiple frame surveys population parameters are 
estimated by using more than one frame which together covers the entire population (Hartley, 
1962). Independent samples are selected respectively from each of the frames and 
information about the target population is gathered based on the combined sample. Hansen et 
al.  (1953) first described about dual frame surveys. There are two major motivations behind 
the use of multiple frame sampling: first is to achieve a desired level of accuracy with 
reduced cost and second is to have a better coverage of the target population and hence 
simultaneously reduce the bias occurring due to coverage errors. In some situations, sampling 
frame may be complete, but sampling using it is quite expensive and on other hand, sampling 
other frames may be less expensive. For example, suppose in an agricultural survey on wheat 
in Haryana state, an area frame (e.g. satellite image based frame) may include all of the 
wheat-growing areas but selecting samples from this frame will increase the cost and 
complexity because there is already one existing system (Timely Reporting Scheme for 
enumeration of crop area) for collecting samples based on the list frame. A better option 
would be to combine random samples taken from both list frame and area frame for 
estimation of the cropped area with a higher precision (Das et al., 2013). Therefore, it is more 
cost effective to select a sample of reduced size from the costly complete frame and 
supplement the sample by additional data taken from other cheaper frames. Multiple frame 
sampling methods in many agricultural surveys in different countries, combine area frame 
consisting of segments of land with identifiable physical boundaries that completely covers 
the entire population and a list frame consisting of the names and address of agricultural 
holdings which may not be complete. Even though the area frame is complete, but the cost 
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for building an area frame is high and the cost to reach a reporting unit is also greater than the 
cost associated to a list frame. Hartley (1962) first derived the basic theory for utilizing two 
frames in the estimation of population parameter. Later Saxena et al. (1984) proposed the 
estimator for population total for multiple frame surveys under two stage sampling design 
using domain estimation considering the frames as independent domains. Das et al. (2013) 
proposed a generalized estimator of the population mean under multistage sampling design 
framework for estimating the average yield of wheat in state of Haryana, India by using list 
frame of Crop Cutting Experiments (CCE) data collected under General Crop Estimation 
Surveys (GCES) and area frame from wide field sensor and linear imaging self scanner 
(LISS-III) data from the Indian Remote Sensing satellite. They proposed a Horvitz Thompson 
estimator of population mean under two stage sampling design.  

Advantages of Multiple Frame Surveys: 
 Combines the advantages of both area frames and list frames, while minimizing 

their limitations. 
 Allows the easy and not expensive creation of lists of agricultural holdings only in 

the selected areas, instead of making it in the entire country 
 Data collection becomes more affordable as sample units are concentrated in 

specific areas 
 Variability can be controlled and measured effectively. 
 Enables the study of specialty or rare products. 

Disadvantages of Multiple Frame Surveys: 
 Every holding in the population must appear in at least one frame. 
 The overlap of sampling units between frames must be clearly identified to prevent 

duplication, as incorrect overlap could introduce bias in the estimation. 
 Both list and area frames should be updated separately. 
 The formulas used for estimation can be complex. 

 

4. Summary:  
This chapter explores the concept of multiple frame surveys, which combine area and list 
frames to optimize sampling in surveys. It explains the importance of sampling frames in 
obtaining data for various purposes, such as policy-making or marketing strategies. List 
frames involve comprehensive lists of population units, like households or farms, and are 
advantageous for their ease of use and cost-effectiveness. However, they have limitations like 
under coverage or over coverage. Area frames, on the other hand, consist of geographical 
units like land segments, providing full population coverage and reducing bias through direct 
observation. Yet, they come with high initial costs and challenges in accessing certain areas. 
Multiple frame surveys address these issues by integrating both frame types, thus improving 
cost-efficiency and reducing bias while providing more accurate data coverage. Though they 
offer several benefits, such as improved variability control and enabling the study of rare 
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products, they require careful management of overlaps between frames and complex 
estimation formulas. 
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1. Introduction 

The concept of small area is pretty old although the name is somewhat new. Small 
areas and domains are synonymous. A part of the population is called a domain. Domains 
can be local areas often geographic areas for which separate estimates are planned. 
According to Purcell and Kish (1979, 1980), for major domains (0.1 of the population or 
more) reasonable sample-based estimates can be obtained with standard methods, from 
probability samples. Minor domains comprise, say, less than 0.1 or even 0.01 of the 
population, hence separate estimates may be imprecise, but these days they are increasingly 
computed with 'Small domain estimates. Mini domains range from 0.01 to 0.0001 of the 
population and for them censuses have been the traditional sources. But these days 
improved small area estimation techniques are used for building estimate for such domains. 
For building estimates for rare items, comprising less than 0.0001 of the population, sample 
surveys are useless requiring separate and distinct methods. This classification of domains 
provides a fairly good idea about the smallness of the 'small area'.  

Small domain or area refers to a population for which reliable statistics of interest 
cannot be produced due to certain limitations of the available data. Examples of domains 
include a geographical region (e.g. a municipality, a census division, block, tehsil, gram 
panchayat etc.), a demographic group (e.g. age x sex), a demographic group within a 
geographic region. The statistics related to these small areas are often termed as small area 
statistics. Due to the increasing demand, survey organizations are faced with producing the 
small area estimates from existing sample surveys. Unfortunately, sample sizes in small 
areas tend to be too small, sometimes non-existent, to provide domains specific reliable 
direct estimates for these small areas. Accurate direct estimates for small areas would 
require a considerable increase in the overall sample size which might exceed an already 
constrained budget and which could further lengthen the data processing time. The 
decision-making process is more effective when granular or disaggregated data are 
available because they may be utilised as the basis for developing policies, identifying 
suitable population groups for policy targets, and keeping track of a programme that has 
already been put into action.  

2. Small Area Estimators 
A survey population U consists of N distinct elements (or ultimate units) identified through 
the labels j = 1, 2, ... , N. A sample s is selected from U with probability p(s), and the 
probability of including the jth element in the sample is πj. The design weight for each 
selected unit j ∈ s is defined as wj=1/πj. Suppose Ui denotes a domain (or subpopulation) 
of interest and si=s∩ Ui denotes the part of the sample s that falls in domain Ui, ∀  i=1, 2, 
… , m. The realized sample size of si is a random variable ni , where 0≤ ni ≤Ni. Auxiliary 
data x will either be known at the element level xj for j ∈ s or for each small area i as totals 
𝑋𝑋𝑖𝑖=∑ 𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗𝑈𝑈𝑖𝑖  or means iX =𝑋𝑋𝑖𝑖

𝑁𝑁𝑖𝑖
 . Here, the problem is to estimate the domain total 𝑌𝑌𝑖𝑖=∑ 𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗𝑈𝑈𝑖𝑖  

or means iY =𝑌𝑌𝑖𝑖
𝑁𝑁𝑖𝑖

 , where Ni, the number of elements in Ui , may or may not be known. Let 
us define 𝑦𝑦𝑖𝑖𝑖𝑖 to be 𝑦𝑦𝑗𝑗 if j𝜖𝜖𝑈𝑈𝑖𝑖and 0 otherwise. An indicator variable 𝑎𝑎𝑖𝑖𝑖𝑖 is similarly defined 
it is equal to one if j𝜖𝜖𝑈𝑈𝑖𝑖and 0 otherwise. The domain total 𝑌𝑌𝑖𝑖 can then be written as 
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𝑌𝑌𝑖𝑖=∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗 =∑ 𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑎𝑎𝑖𝑖𝑖𝑖. Small area estimation is categorized into two types of estimators: 
direct and indirect estimators. 

2.1 Direct estimator 
A direct estimator is one that uses values of the variable of interest, y, only from the sample 
units in the domain of interest. 

Suppose a linear estimator based on sample weights �𝑤𝑤𝑗𝑗; 𝑗𝑗𝑗𝑗𝑗𝑗�is used to make inference 
about population level quantities. Here, s denotes the sample of size n drawn with sampling 
design p(s) from a population 𝑈𝑈 = {1, … . ,𝑁𝑁} of size N. Further, if 𝜋𝜋𝑗𝑗 = ∑ 𝑝𝑝(𝑠𝑠)𝑗𝑗𝑗𝑗𝑗𝑗  are the 
first order inclusion probabilities then 𝑤𝑤𝑗𝑗 = 𝜋𝜋𝑗𝑗−1 defines the design weight of element j.  

Under simple random sampling, 𝜋𝜋𝑗𝑗 = 𝑛𝑛𝑁𝑁−1 and 𝑤𝑤𝑗𝑗 =  𝑁𝑁𝑛𝑛−1. Let us assume that the 
population consists of m non-overlapping domains or small areas 𝑈𝑈𝑖𝑖 each with population 
of size Ni such that 1

m
iiU U

=
=∪  and 𝑁𝑁 = ∑ 𝑁𝑁𝑖𝑖𝑚𝑚

𝑖𝑖=1 . Let 𝑠𝑠𝑖𝑖 be the part of the sample of size 

𝑛𝑛𝑖𝑖(≥ 0) that falls in small area 𝑖𝑖 such that 1
m

iis s
=

=∪  and 𝑛𝑛 = ∑ 𝑛𝑛𝑖𝑖𝑚𝑚
𝑖𝑖=1 . It may be noted that 

𝑛𝑛𝑖𝑖 is a random variable. Let yj denotes the value of characteristic of interest y for jth 
population unit in small area 𝑖𝑖. The population mean of y in the small area 𝑖𝑖 is given by, 

1ˆ
i

i i jj U
Y N y−

∈
= ∑ . If the population size Ni of small areas i is unknown then the population 

mean of y in the small area i could be estimated using Hajek type estimator, 

𝑌𝑌��𝑖𝑖
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = �∑ 𝑤𝑤𝑗𝑗𝑗𝑗𝑗𝑗𝑠𝑠𝑖𝑖 �

−1
�∑ 𝑤𝑤𝑗𝑗𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗𝑠𝑠𝑖𝑖 �, 

or, if the population size 𝑁𝑁𝑖𝑖 of the small areas 𝑖𝑖 is known it leads to Horvitz-Thompson 
estimator, 

𝑌𝑌��𝑖𝑖𝐻𝐻𝐻𝐻 = 𝑁𝑁𝑖𝑖−1�∑ 𝑤𝑤𝑗𝑗𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗𝑠𝑠𝑖𝑖 �. 
The disadvantage of direct estimator is that irrespective of the form of direct estimator 
being used, it is easy to see that its variance can be large when the sample size 𝑛𝑛𝑖𝑖 in ith area 
is small. 
Example: 
Simple random sampling, with no auxiliary information, a direct estimator of the 
population mean of y, 1ˆ

i
i i jj U

Y N y−
∈

= ∑  for small area i is given by, 

ˆ
i iY y= ,  

where, iy  =
∑ 𝑤𝑤𝑗𝑗𝑦𝑦𝑗𝑗𝑠𝑠𝑖𝑖
∑ 𝑤𝑤𝑗𝑗𝑠𝑠𝑖𝑖

 =
∑ 𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗𝑠𝑠𝑖𝑖

𝑛𝑛𝑖𝑖
 is the sample mean of y in ith small area and its variance is 

given by, 

𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝 � ˆ
iY � = (1−𝑓𝑓𝑖𝑖)𝑆𝑆𝑖𝑖

2

𝑛𝑛𝑖𝑖
 , 

with 𝑓𝑓𝑖𝑖 = 𝑛𝑛𝑖𝑖
𝑁𝑁𝑖𝑖�  and ( ) ( )212

1
1 iN

i i j ij
S N y Y−

=
= − −∑ , 𝑁𝑁𝑖𝑖 ≥ 2. Here 𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝 denotes the variance 

under the design-based approach. An unbiased estimator of 2
iS  is given by, 

( ) ( )212
1

1 in
i i j ij

s n y y−

=
= − −∑ . Thus, an unbiased estimator for variance is given by  
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𝑣𝑣 � ˆ
iY � = (1−𝑓𝑓𝑖𝑖)𝑠𝑠𝑖𝑖

2

𝑛𝑛𝑖𝑖
  when 𝑁𝑁𝑖𝑖 is known. 

For unknown 𝑁𝑁𝑖𝑖, 𝑓𝑓𝑖𝑖 = 𝑛𝑛𝑖𝑖
𝑁𝑁𝑖𝑖� is replaced by 𝑓𝑓 = 𝑛𝑛

𝑁𝑁�  and then estimator for variance is given 
by 

𝑣𝑣 � ˆ
iY � = (1−𝑓𝑓)𝑠𝑠𝑖𝑖

2

𝑛𝑛𝑖𝑖
. 

It is obvious that for small sample size 𝑛𝑛𝑖𝑖, the variance will be larger unless the variability 
of the y values is sufficiently small. 
Suppose in addition to survey variable y, values of p-auxiliary variables are also known. 
Consider ijx  is a 𝑝𝑝𝑝𝑝1 vector of auxiliary variable x for the jth unit in ith small area. Then 
with known auxiliary information, a more efficient design based direct estimator of iY  is 
the regression estimator defined as 

ˆ ˆ( )REG
i i i i iY y ′= + −X x β , 

where, 
( )

1
1

1

( )( )ˆ
( )( )

i

i

n
ij i ij ij

i n
ij i ij ij

y y
=

−

=

− −
=

′− −

∑
∑

x x
β

x x x x
 is the vector of estimated regression coefficients in 

ith small area, 1

i
i i jj s

x n x−
∈

= ∑  and 1

i
i i jj U

X N x−
∈

= ∑  are the vectors of sample mean and 
population mean of p auxiliary variable in ith small area respectively. The variance of the 
regression estimator is given by 

𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝 � ˆ REG
iY � ≈ (1−𝑓𝑓𝑖𝑖)

𝑛𝑛𝑖𝑖
𝑆𝑆𝑖𝑖2(1 − 𝜌𝜌𝑖𝑖2) = (1 − 𝜌𝜌𝑖𝑖2)𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝 � ˆ

iY � 

where 𝜌𝜌𝑖𝑖 is the multiple correlation between survey variable y and auxiliary variable vector 
𝐱𝐱 in area 𝑖𝑖. 
The estimate of variance is provided by 

𝑣𝑣 � ˆ REG
iY  |𝑛𝑛𝑖𝑖� =

(1 − 𝑓𝑓𝑖𝑖)
𝑛𝑛𝑖𝑖

𝑠𝑠𝑖𝑖2(1 − 𝜌𝜌�𝑖𝑖2). 

By using auxiliary variables, the variance is reduced by the factor (1 − 𝜌𝜌𝑖𝑖2) indicating that 
use of a good auxiliary information, in the sense of high correlation with survey variable y, 
increases the accuracy in small area estimation. 

2.2 Indirect estimators 
When the sample size for each small area is sufficiently large to give reasonably accurate 
estimates, the direct estimator is the most desirable. As the sources of data are usually 
sample surveys designed to produce larger or higher-level statistics, sample sizes for the 
small areas are usually small. Consequently, the associated variances of these estimators 
are likely to be unacceptably large. Therefore, for estimating the small areas, it is necessary 
to employ the estimation methods that ‘borrow strength’ from related areas. These 
estimators are often referred as the indirect estimators since they use values of survey 
variables (and auxiliary variables) from other small areas or times, and possibly from both. 
They borrow information (data) from other small areas or times (or both) by use of 
statistical models either based on implicit or explicit models that link related small areas 
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through auxiliary information. The traditional indirect estimation techniques based on 
implicit linking models are synthetic and composite estimation. 

2.2.1 Synthetic estimators 
In producing the synthetic estimates for small areas, availability of direct estimates for a 
set of larger domains of the population is assumed. Appropriate weights or proportions are 
then applied to these large population domain estimates to obtain the desired small area 
estimates. This class of estimators implicitly assumes that small areas which are being 
considered are similar, in some sense, to some larger areas which contain them and for 
which the reliable direct estimate is available. Gonzales (1973) described synthetic 
estimator as one in which an unbiased estimator of a large area is used to derive estimates 
for subareas under the assumption that the small areas have the same characteristics as the 
larger areas. The term ‘synthetic’ refers to the fact that an estimator computed from a large 
domain is used for each of the separate areas comprising that domain, assuming that the 
areas are ‘homogeneous’ with respect to the quantity that is estimated. Thus, synthetic 
estimators already borrow information from other ‘similar areas’. 
Rao and Choudry (1995) suggested the use of a ratio synthetic estimator. Let us consider 
availability of a single auxiliary variable x. The ratio synthetic estimator for the population 
total of y in small area 𝑖𝑖 is ˆ ˆ

i i

SynR
y i xT RT= . It is assumed that in area 𝑖𝑖 population ratio is 𝑅𝑅𝑖𝑖 =

𝑇𝑇𝑦𝑦𝑖𝑖
𝑇𝑇𝑥𝑥𝑖𝑖
� , 

𝑇𝑇𝑦𝑦𝑖𝑖 = ∑ 𝑦𝑦𝑗𝑗𝑁𝑁
𝑗𝑗=1  and 𝑇𝑇𝑥𝑥𝑖𝑖 = ∑ 𝑥𝑥𝑗𝑗𝑁𝑁

𝑗𝑗=1  respectively being the population total of the characteristic 
of interest y and covariate x for the 𝑖𝑖𝑡𝑡ℎsmall area, are homogeneous. Thus, 𝑅𝑅𝑖𝑖 = 𝑅𝑅𝑈𝑈 =
𝑇𝑇𝑦𝑦

𝑇𝑇𝑥𝑥
� , where, 𝑅𝑅𝑈𝑈,𝑇𝑇𝑦𝑦,𝑇𝑇𝑥𝑥 are the values for the whole population and 𝑅𝑅𝑈𝑈 is estimated by 

𝑅𝑅�𝑈𝑈 = 𝑦𝑦�
𝑥̅𝑥� , where 𝑦𝑦� and 𝑥̅𝑥 are the overall sample means of y and x respectively. Here, a 

subscript of U is being used to denote the population level quantities.  

The design-variance of a synthetic estimator 𝑇𝑇�𝑦𝑦𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠of the population total of y in area 𝑖𝑖 will 

be small relative to the design-variance of a direct estimator 𝑇𝑇�𝑦𝑦𝑖𝑖
𝑑𝑑  because it depends on the 

precision of direct estimators at a large area level. This variance can be estimated using 
standard design-based methods but it is more difficult to estimate the MSE of 𝑇𝑇�𝑦𝑦𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠 because 
it is hard to estimate the bias. 
Now, in the case of model-based synthetic estimation, let us consider the regression model, 

ij ij ijy e′= +x β , 

where, 𝑦𝑦𝑖𝑖𝑖𝑖 is the value of variable of interest for the 𝑗𝑗𝑡𝑡ℎ(𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖) unit in the small area 
𝑖𝑖(1, … ,𝑚𝑚), ijx is the 𝑝𝑝𝑝𝑝1 vector of auxiliary variables, β  is a 𝑝𝑝𝑝𝑝1 vector of regression 
coefficients and 𝑒𝑒𝑖𝑖𝑖𝑖 is error term often assumed to be normally distributed with mean zero 
and variance 2σ . 
The regression synthetic estimator for the population mean of study variable y in small area 
𝑖𝑖 is defined as, 

ˆ ˆ( )SynREG
i i i iY y ′= + −X x β , 
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where 
( )

1
1

1 1

( )( )ˆ
( )( )

i

i

m n
ij i ij ii j

m n
ij i ij ii j

y y
= =

−

= =

− −
=

′− −

∑ ∑
∑ ∑

x x
β

x x x x
 is the full sample estimate, i.e. calculated using 

data from entire areas and thus it is different from direct regression estimator. For the areas 
with no sample data, the model-based synthetic estimator for population mean of study 
variable y in small area 𝑖𝑖 is defined as ˆ ˆMSyn

i iY ′= X β . This will be very efficient when small 
area 𝑖𝑖 does not exhibit strong individual effect with respect to the regression coefficient. 
 
2.2.2 Composite estimator 
As the sample size in a small area increase, a direct estimator becomes more desirable than 
a synthetic estimator. This is true whether or not the sample was designed to produce 
estimates for small areas. This motivates the use of a weighted sum of direct estimator and 
synthetic estimator as a desirable alternative than choosing one over the other. This 
weighted estimator is termed as the composite estimator. These estimators are of interest 
because they permit trade-off among the advantages and disadvantages of direct and 
synthetic estimators through their weighted combination. In general, the composite 
estimator for the population total of y in small area 𝑖𝑖 is defined as 

𝑇𝑇�𝑦𝑦𝑖𝑖
𝑐𝑐 = ∅𝑖𝑖𝑇𝑇�𝑦𝑦𝑖𝑖

𝑑𝑑 + (1 − ∅𝑖𝑖)𝑇𝑇�𝑦𝑦𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠, 

where, 𝑇𝑇�𝑦𝑦𝑖𝑖
𝑑𝑑  and 𝑇𝑇�𝑦𝑦𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠 are the direct and synthetic estimator of population total of y in ith 
small area respectively. Here, ∅𝑖𝑖(0 ≤ ∅𝑖𝑖 ≤ 1) is a suitably chosen weight. 
The traditional indirect estimators such as synthetic and composite estimator have the 
advantage of being simple to implement. These techniques provide a more efficient 
estimate than the corresponding design-based direct estimator for each small area through 
the use of implicit models which ‘borrow strength’ across the small areas. These models 
assume that all the areas of interest behave similarly with respect to the variable of interest 
and do not take into account the area specific variability. However, it can sometimes lead 
to severe bias if the assumption of homogeneity within the larger domain is violated or the 
structure of the population changed since the previous census. That is area specific 
variability typically remains even after accounting for the auxiliary information. This 
limitation is handled by an alternative estimation technique based on an explicit linking 
model, which provides a better approach to SAE by incorporating random area-specific 
effects that account for the between area variation beyond that is explained by auxiliary 
variables included in the model, referred as the mixed effect model. Note that the random 
area effects in the mixed effect model capture the dissimilarities between the areas. In 
general, estimation methods based on an explicit model are more efficient than traditional 
methods based on an implicit model. 

3. Mixed Models in Small Area Estimation 
Based on the level of auxiliary information available and utilised, two types of random 
effects model for small area estimation are described in the literature: 

1. The area level mixed effect model (or Area level model) which uses area-specific 
auxiliary information and 

2. Unit level mixed effect model (or Unit level model) which uses the unit level 
auxiliary information. 

These are special cases of the linear mixed model, usually referred as area level and unit 
level small area models. 
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3.1 Area level models 
Area level models can be used when individual measurements for auxiliary variables are 
not available and the auxiliary information is available only at the area level. The model, 
used originally by Fay and Herriot (1979) for the prediction of mean per capita income in 
small geographical areas (less than 500 persons) within counties is defined as, 

𝜽𝜽�𝒊𝒊 = 𝜽𝜽𝒊𝒊 + 𝒆𝒆𝒊𝒊 ;𝜽𝜽𝒊𝒊 = 𝒙𝒙𝒊𝒊′ 𝜷𝜷 + 𝒖𝒖𝒊𝒊 

where, 𝜃𝜃�𝑖𝑖 denotes direct sample estimator (ex: sample mean 𝑦𝑦�𝑖𝑖) and 𝑒𝑒𝑖𝑖 represents sampling 
error, assumed to have zero mean and known design variance 𝑉𝑉𝑉𝑉𝑉𝑉𝐷𝐷(𝑒𝑒𝑖𝑖) = 𝜎𝜎𝐷𝐷𝐷𝐷2  and 𝑥𝑥𝑖𝑖 
represent the area level information. Here, 𝜃𝜃𝑖𝑖 is true population parameter. 

The Best Linear Unbiased Predictor (BLUP) of 𝜃𝜃𝑖𝑖 under this model is, 

𝜽𝜽𝒊𝒊� =𝜸𝜸𝒊𝒊𝜽𝜽�𝒊𝒊 + (𝟏𝟏 − 𝜸𝜸𝒊𝒊)𝒙𝒙𝒊𝒊′𝜷𝜷�𝑮𝑮𝑮𝑮𝑮𝑮 = 𝒙𝒙𝒊𝒊′𝜷𝜷�𝑮𝑮𝑮𝑮𝑮𝑮 + 𝜸𝜸𝒊𝒊�𝜽𝜽�𝒊𝒊 − 𝒙𝒙𝒊𝒊′𝜷𝜷�𝑮𝑮𝑮𝑮𝑮𝑮�, 

where , 𝛾𝛾𝑖𝑖=𝜎𝜎𝑢𝑢2 (𝜎𝜎𝐷𝐷𝐷𝐷2 + 𝜎𝜎𝑢𝑢2)⁄  and 

𝜷𝜷�𝑮𝑮𝑮𝑮𝑮𝑮 = ��
𝑋𝑋�𝑖𝑖′𝑋𝑋�𝑖𝑖

𝜎𝜎𝐷𝐷𝐷𝐷2 + 𝜎𝜎𝑢𝑢2

𝑚𝑚

𝑖𝑖=1

�
−1

��
𝑋𝑋�𝑖𝑖′𝜃𝜃�𝑖𝑖

𝜎𝜎𝐷𝐷𝐷𝐷2 + 𝜎𝜎𝑢𝑢2

𝑚𝑚

𝑖𝑖=1

�. 

In practice, the variances 𝜎𝜎𝑢𝑢2 and 𝜎𝜎𝐷𝐷𝐷𝐷2  are usually unknown and they are replaced by sample 
estimates yielding the corresponding Empirical-BLUPs (or EBLUPs).  

𝜽𝜽𝒊𝒊�
∗= 𝜸𝜸𝒊𝒊�  𝜽𝜽�𝒊𝒊 + (𝟏𝟏 − 𝜸𝜸�𝒊𝒊)𝒙𝒙𝒊𝒊′𝜷𝜷�𝑮𝑮𝑮𝑮𝑮𝑮∗ = 𝒙𝒙𝒊𝒊′𝜷𝜷�𝑮𝑮𝑮𝑮𝑮𝑮∗ + 𝜸𝜸𝒊𝒊� �𝜽𝜽�𝒊𝒊 − 𝒙𝒙𝒊𝒊′𝜷𝜷�𝑮𝑮𝑮𝑮𝑮𝑮∗ � 

where,  𝛾𝛾𝚤𝚤� = 𝜎𝜎�𝑢𝑢2 (𝜎𝜎�𝐷𝐷𝐷𝐷2 + 𝜎𝜎�𝑢𝑢2)⁄  and 

𝜷𝜷�𝑮𝑮𝑮𝑮𝑮𝑮∗ = ��
𝑋𝑋�𝑖𝑖′𝑋𝑋�𝑖𝑖

𝜎𝜎�𝐷𝐷𝐷𝐷2 + 𝜎𝜎�𝑢𝑢2

𝑚𝑚

𝑖𝑖=1

�
−1

��
𝑋𝑋�𝑖𝑖′𝜃𝜃�𝑖𝑖

𝜎𝜎�𝐷𝐷𝐷𝐷2 + 𝜎𝜎�𝑢𝑢2

𝑚𝑚

𝑖𝑖=1

�. 

3.2 Unit level models 

A basic unit-level model assumes that the unit y-values, 𝑦𝑦𝑖𝑖𝑖𝑖 , associated with the 𝑗𝑗𝑡𝑡ℎ  

population unit (𝑗𝑗 = 1, … ,𝑁𝑁𝑖𝑖) in the 𝑖𝑖𝑡𝑡ℎ area are related to unit-level covariates, 𝑦𝑦𝑖𝑖𝑖𝑖 for 
which the population mean vector 𝑋𝑋�𝑖𝑖 is known. If 𝑦𝑦 is a continuous response (e.g. crop 
yield), we assume a one-fold nested error linear regression model 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝒙𝒙𝒊𝒊𝒊𝒊𝑻𝑻𝜷𝜷 + 𝑢𝑢𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖 , 𝑗𝑗 = 1, … ,𝑁𝑁𝑖𝑖; 𝑖𝑖 = 1, … ,𝑚𝑚 

where the random sample area effects 𝑢𝑢𝑖𝑖  have mean 0 and common variance 𝜎𝜎𝑢𝑢2 and are 
independently distributed. Further, the 𝑢𝑢𝑖𝑖 are independent of the residual errors 𝑒𝑒𝑖𝑖𝑖𝑖 which 
are assumed to be independently distributed with mean 0 and common variance  𝜎𝜎𝑒𝑒2 
(Battese et al., 1988). If 𝑁𝑁𝑖𝑖 is large, the population mean 𝑌𝑌�𝑖𝑖 is approximately equal to 𝑋𝑋𝑖𝑖𝑖𝑖𝑇𝑇𝛽𝛽 +
𝑢𝑢𝑖𝑖. The sample data �𝑦𝑦𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑗𝑗 = 1, … , 𝑛𝑛𝑖𝑖; 𝑖𝑖 = 1, … ,𝑚𝑚� are assumed to obey the population 
model. This implies that sample selection bias is absent, which is satisfied by simple 
random sampling within areas. For more general sampling designs, the sample data will 
satisfy the assumption if the selection probabilities, 𝑝𝑝𝑖𝑖𝑖𝑖 depend only on the auxiliary 
variables in 𝑥𝑥𝑖𝑖𝑖𝑖; for example, for probability proportional to size (PPS) sample, where size 
is used as an auxiliary variable in model. Non-probability samples obeying above model 
can also be used to estimate the mean 𝑌𝑌�𝑖𝑖. 
In vector form the model can be expressed as, 
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𝐲𝐲𝑖𝑖 = 𝐗𝐗𝑖𝑖𝛃𝛃 + 𝑢𝑢𝑖𝑖𝟏𝟏𝑛𝑛𝑖𝑖 + 𝐞𝐞𝑖𝑖 

where, 𝐲𝐲𝑖𝑖 = �𝑦𝑦𝑖𝑖1,𝑦𝑦𝑖𝑖2, …𝑦𝑦𝑖𝑖𝑛𝑛𝑖𝑖�
′
, 𝐗𝐗𝑖𝑖 = �𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … 𝑥𝑥𝑖𝑖𝑛𝑛𝑖𝑖�

′
a 𝑛𝑛𝑖𝑖𝑋𝑋𝑋𝑋 matrix and 𝐞𝐞𝑖𝑖 =

�𝑒𝑒𝑖𝑖1, 𝑒𝑒𝑖𝑖2, … 𝑒𝑒𝑖𝑖𝑛𝑛𝑖𝑖�
′
. The variance-covariance matrix of 𝐲𝐲𝑖𝑖 is 𝑉𝑉𝑉𝑉𝑉𝑉(𝐲𝐲𝑖𝑖) = 𝐕𝐕𝑖𝑖 = 𝜎𝜎𝑒𝑒2𝐈𝐈𝑛𝑛𝑖𝑖 +

𝜎𝜎𝑢𝑢2𝟏𝟏𝑛𝑛𝑖𝑖𝟏𝟏𝑛𝑛𝑖𝑖
′ . 

Population mean of 𝑦𝑦 in area 𝑖𝑖 is   𝑌𝑌�𝑖𝑖 = 𝐗𝐗�𝑖𝑖𝑇𝑇𝛃𝛃 + 𝑢𝑢𝑖𝑖 + 𝑒̅𝑒𝑖𝑖, where 𝐗𝐗�𝑖𝑖𝑇𝑇 = 𝑁𝑁𝑖𝑖−1 ∑ 𝐱𝐱𝑗𝑗
𝑁𝑁𝑖𝑖
𝑗𝑗=1  is 

assumed to be known. For sufficiently large 𝑁𝑁𝑖𝑖, 𝑒̅𝑒𝑖𝑖 ≈ 0 then mean of 𝑦𝑦 in small area 𝑖𝑖 is 
approximated by, 𝜇𝜇𝑖𝑖 = 𝐗𝐗�𝑖𝑖𝑇𝑇𝛃𝛃 + 𝑢𝑢𝑖𝑖. 

Example:  Assume that ,
ˆ
i DIRY = 𝐗𝐗�𝑖𝑖𝑇𝑇𝛃𝛃+ 𝑣𝑣𝑖𝑖, where i i iv u e= + .  Then the EBLUP estimate of 

𝑌𝑌�𝑖𝑖 is a composite estimate of the form 

 ,
ˆ
i EBLUPY  = 𝛾𝛾�𝑖𝑖[𝑦𝑦�𝑖𝑖 + ( 𝐗𝐗�𝑖𝑖 −  𝐱𝐱�𝑖𝑖)𝑇𝑇𝛃𝛃] + (1 − 𝛾𝛾�𝑖𝑖)𝐗𝐗�𝑖𝑖𝑇𝑇𝛃𝛃, ∀  𝑖𝑖 = 1, … ,𝑚𝑚  or 

,
ˆ
i EBLUPY  = 𝑿𝑿�𝒊𝒊′𝜷𝜷� + 𝛾𝛾𝑖𝑖�𝑦𝑦�𝑖𝑖 − 𝒙𝒙�𝒊𝒊′𝜷𝜷��

 

where,  𝜷𝜷� = ∑ 𝑿𝑿𝒊𝒊
′𝑽𝑽𝒊𝒊

−𝟏𝟏𝒚𝒚𝒊𝒊𝒊𝒊
∑ 𝑿𝑿𝒊𝒊

′𝑽𝑽𝒊𝒊
−𝟏𝟏𝑿𝑿𝒊𝒊𝒊𝒊

  is the BLUE of 𝛃𝛃 and 𝛾𝛾𝑖𝑖 = 𝜎𝜎𝑢𝑢2

𝜎𝜎𝑢𝑢2+
𝜎𝜎𝑒𝑒2 𝑛𝑛𝑖𝑖�

. 

4. Applications 
 Small area estimation techniques can be applied in Agriculture and allied sector, 

For example  
a. Estimation of crop yield at GP, tehsil level and Block level 
b. Estimation of Post harvest loses at district level 
c. Estimation of milk production at district level 
d. To estimate food insecurity at district level. 

 Small area estimation techniques can also be applied in NSSO data 
a. To obtain district level estimates of amount of loan outstanding per 

household. 
b. To obtain district level poverty estimates 
c. To estimate income and unemployment rate at district level 

 
5. Case Study  
5.1 Disaggregate-level estimates of indebtedness in the state of Uttar Pradesh in India-
an application of small area estimation technique (Chandra et. al. 2011) 
Objective: Obtaining district wise estimates of proportion of indebted farm households for 
different land-holding classes in the State of Uttar Pradesh. 
Data: The variable of interest for which small area estimates are required is drawn from 
the Debt-Investment Survey 2002-03 of NSSO. The auxiliary (covariates) variables known 
for the population are drawn from the Population Census 2001 and the Agriculture Census 
2003. 

Methodology: The value of variable of interest 𝑦𝑦 (which is the number of indebted 
household) in the area 𝑑𝑑 is defined by 𝑦𝑦𝑑𝑑, 𝑦𝑦𝑠𝑠𝑠𝑠  𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦𝑟𝑟𝑟𝑟 denotes sample and non-sample 
counts of indebted households in the area d respectively, and 𝑥𝑥𝑑𝑑 denote the k-vector of the 
covariates for area 𝑑𝑑 from the previous sources. The model linking the probabilities of 
success with the covariates is the logistic linear mixed model given as, 
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𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜋𝜋𝑑𝑑) = 𝐱𝐱𝑑𝑑′ 𝛃𝛃 + 𝑢𝑢𝑑𝑑 , d=1,2,…,D 
It is a special case of a generalized linear mixed model (GLMM) with logit link function 
and suitable for discrete, particularly binary variable. 
Results: The direct estimates and model-based estimates of proportion of indebted farm 
households for the state of Uttar Pradesh for five different land-holding classes (Cat 0 = All 
land holdings, Cat 1= Marginal, Cat 2= Small, Cat 3= Semi medium, Cat 4= Medium, Cat 
5= Large) is generated using SAE methodology and are presented in the following tables. 
Table 1: Direct estimates and model-based estimates of proportion of indebted farm 
households for Cat 0 

District Direct Model 
based 

District Direct Model 
based 

District Direct Model 
based 

Saharanpur 0.6 0.6 Etawah 0.51 0.52 Ambedker 
Nr 

0.48 0.5 

Muzaffarnagar 0.61 0.6 Auraya 0.5 0.51 Sultanpur 0.51 0.5 
Bijnor 0.55 0.56 Kheri 0.58 0.58 Bahraich 0.51 0.52 
Moradabad 0.56 0.57 Sitapur 0.56 0.56 Srawasti 0.51 0.52 
Rampur 0.55 0.57 Hardoi 0.46 0.5 S.Kabir Nr 0.61 0.54 
J.B.P.Nr 0.52 0.52 Unnao 0.59 0.57 Kushi Nagar 0.58 0.55 
Meerut 0.59 0.58 Lucknow 0.51 0.52 Balrampur 0.46 0.48 
Baghpat 0.58 0.55 Raibarely 0.51 0.52 Gonda 0.54 0.53 
Ghaziabad 0.55 0.55 Kanpur 

Dehat 
0.47 0.5 Sidharth Nr 0.43 0.47 

Bulad Shahar 0.56 0.56 Kanpur Nr 0.52 0.53 Basti 0.58 0.55 
Aligarh 0.59 0.6 Fatehpur 0.59 0.54 Maharajganj 0.47 0.49 
Mathura 0.55 0.56 Jalaun 0.63 0.58 Gorakhpur 0.52 0.52 
Hathras 0.68 0.57 Jhanshi 0.55 0.54 Deoria 0.54 0.54 
Agra 0.63 0.58 Lalitpur 0.71 0.57 Azamgarh 0.47 0.49 
Firozabad 0.52 0.54 Hamirpur 0.52 0.52 Mau 0.58 0.54 
Etah 0.52 0.55 Mahoba 0.48 0.52 Ballia 0.56 0.53 
Farukhabad 0.52 0.54 Banda 0.55 0.53 Jaunpur 0.47 0.48 
Mainpuri 0.57 0.55 Chitrakut 0.61 0.54 Ghazipur 0.43 0.47 
Badaun 0.55 0.56 Pratapgarh 0.44 0.47 Chandauli 0.4 0.47 
Bareilly 0.63 0.61 Kaushambi 0.57 0.53 Varanasi 0.51 0.51 
Pilibhit 0.57 0.56 Allahabad 0.57 0.54 St. Ravidas 

Nr 
0.48 0.51 

Shahjahanpur 0.68 0.62 Barabanki 0.57 0.56 Mizapur 0.44 0.47 
Kannauj 0.5 0.53 Faizabad 0.48 0.5 Shanbhadra 0.36 0.44 
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Table 2: Direct estimates and model-based estimates of proportion of indebted farm 
households for Cat 1 

District Direct Model 
based 

District Direct Model 
based 

District Direct Model 
based 

Saharanpur 0.59 0.58 Etawah 0.49 0.49 Ambedker 
Nr 

0.47 0.48 

Muzaffarnagar 0.58 0.57 Auraya 0.48 0.48 Sultanpur 0.47 0.47 
Bijnor 0.51 0.52 Kheri 0.56 0.56 Bahraich 0.49 0.49 
Moradabad 0.51 0.53 Sitapur 0.55 0.54 Srawasti 0.46 0.48 
Rampur 0.52 0.53 Hardoi 0.43 0.46 S.Kabir Nr 0.6 0.52 
J.B.P.Nr 0.47 0.48 Unnao 0.59 0.55 Kushi Nagar 0.56 0.53 
Meerut 0.56 0.55 Lucknow 0.46 0.48 Balrampur 0.43 0.45 
Baghpat 0.62 0.54 Raibarely 0.45 0.48 Gonda 0.56 0.54 
Ghaziabad 0.5 0.51 Kanpur 

Dehat 
0.43 0.46 Sidharth Nr 0.38 0.43 

Bulad Shahar 0.56 0.55 Kanpur Nr 0.5 0.5 Basti 0.52 0.51 
Aligarh 0.53 0.55 Fatehpur 0.58 0.53 Maharajganj 0.45 0.47 
Mathura 0.48 0.51 Jalaun 0.53 0.53 Gorakhpur 0.52 0.51 
Hathras 0.67 0.54 Jhanshi 0.46 0.49 Deoria 0.55 0.53 
Agra 0.61 0.56 Lalitpur 0.63 0.51 Azamgarh 0.45 0.46 
Firozabad 0.47 0.49 Hamirpur 0.53 0.5 Mau 0.52 0.5 
Etah 0.5 0.52 Mahoba 0.28 0.46 Ballia 0.57 0.54 
Farukhabad 0.43 0.48 Banda 0.52 0.5 Jaunpur 0.44 0.45 
Mainpuri 0.49 0.49 Chitrakut 0.56 0.51 Ghazipur 0.43 0.45 
Badaun 0.53 0.53 Pratapgarh 0.36 0.42 Chandauli 0.3 0.41 
Bareilly 0.61 0.58 Kaushambi 0.59 0.53 Varanasi 0.5 0.49 
Pilibhit 0.56 0.53 Allahabad 0.6 0.56 St. Ravidas 

Nr 
0.51 0.49 

Shahjahanpur 0.65 0.59 Barabanki 0.52 0.52 Mizapur 0.46 0.47 
Kannauj 0.46 0.49 Faizabad 0.43 0.47 Shanbhadra 0.25 0.38 

 
Table 3: Direct estimates and model-based estimates of proportion of indebted farm 
households for Cat 2 

District Direct Model 
based 

District Direct Model 
based 

District Direct Model 
based 

Saharanpur 0.5 0.65 Etawah 0.48 0.6 Ambedker 
Nr 

0.41 0.55 

Muzaffarnagar 0.67 0.63 Auraya 0.52 0.59 Sultanpur 0.55 0.51 
Bijnor 0.64 0.63 Kheri 0.59 0.63 Bahraich 0.45 0.57 
Moradabad 0.72 0.64 Sitapur 0.5 0.61 Srawasti 0.56 0.58 
Rampur 0.69 0.64 Hardoi 0.47 0.59 S.Kabir Nr 0.7 0.56 
J.B.P.Nr 0.57 0.59 Unnao 0.58 0.59 Kushi Nagar 0.58 0.5 
Meerut 0.73 0.64 Lucknow 0.63 0.58 Balrampur 0.5 0.52 
Baghpat 0.55 0.61 Raibarely 0.5 0.55 Gonda 0.55 0.57 
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Ghaziabad 0.68 0.62 Kanpur 
Dehat 

0.55 0.6 Sidharth Nr 0.44 0.53 

Bulad Shahar 0.53 0.6 Kanpur Nr 0.58 0.58 Basti 0.62 0.56 
Aligarh 0.73 0.66 Fatehpur 0.69 0.52 Maharajganj 0.62 0.53 
Mathura 0.66 0.63 Jalaun 0.5 0.61 Gorakhpur 0.53 0.54 
Hathras 0.78 0.61 Jhanshi 0.64 0.59 Deoria 0.58 0.57 
Agra 0.71 0.62 Lalitpur 1 0.59 Azamgarh 0.47 0.52 
Firozabad 0.63 0.62 Hamirpur 0.63 0.58 Mau 0.74 0.57 
Etah 0.63 0.65 Mahoba 0.45 0.58 Ballia 0.57 0.53 
Farukhabad 0.75 0.62 Banda 0.59 0.55 Jaunpur 0.65 0.53 
Mainpuri 0.72 0.61 Chitrakut 0.8 0.58 Ghazipur 0.43 0.53 
Badaun 0.6 0.63 Pratapgarh 0.6 0.53 Chandauli 0.64 0.56 
Bareilly 0.71 0.65 Kaushambi 0.54 0.52 Varanasi 0.45 0.56 
Pilibhit 0.58 0.62 Allahabad 0.42 0.48 St. Ravidas 

Nr 
0.5 0.59 

Shahjahanpur 0.69 0.63 Barabanki 0.65 0.58 Mizapur 0.25 0.51 
Kannauj 0.5 0.62 Faizabad 0.5 0.55 Shanbhadra 0.47 0.52 

 
Table 4: Direct estimates and model-based estimates of proportion of indebted farm 
households for Cat 3 

District Direct Model 
based 

District Direct Model 
based 

District Direct Model 
based 

Saharanpur 0.62 0.66 Etawah 0.64 0.55 Ambedker 
Nr 

0.53 0.54 

Muzaffarnagar 0.69 0.66 Auraya 0.55 0.54 Sultanpur 0.63 0.53 
Bijnor 0.5 0.61 Kheri 0.69 0.64 Bahraich 0.53 0.56 
Moradabad 0.52 0.64 Sitapur 0.57 0.6 Srawasti 0.7 0.55 
Rampur 0.5 0.63 Hardoi 0.56 0.56 S.Kabir Nr 0.4 0.53 
J.B.P.Nr 0.56 0.54 Unnao 0.6 0.57 Kushi Nagar 0.84 0.53 
Meerut 0.56 0.63 Lucknow 0.67 0.55 Balrampur 0.48 0.53 
Baghpat 1 0.58 Raibarely 0.69 0.57 Gonda 0.26 0.55 
Ghaziabad 0.59 0.6 Kanpur 

Dehat 
0.52 0.57 Sidharth Nr 0.53 0.53 

Bulad Shahar 0.55 0.59 Kanpur Nr 0.33 0.56 Basti 0.67 0.55 
Aligarh 0.68 0.67 Fatehpur 0.41 0.52 Maharajganj 0.38 0.54 
Mathura 0.82 0.63 Jalaun 0.75 0.61 Gorakhpur 0.41 0.55 
Hathras 0.5 0.57 Jhanshi 0.52 0.57 Deoria 0.6 0.57 
Agra 0.72 0.59 Lalitpur 0.71 0.56 Azamgarh 0.56 0.55 
Firozabad 0.53 0.57 Hamirpur 0.29 0.55 Mau 0.67 0.54 
Etah 0.56 0.64 Mahoba 0.78 0.56 Ballia 0.48 0.54 
Farukhabad 0.44 0.58 Banda 0.47 0.54 Jaunpur 0.52 0.53 
Mainpuri 0.86 0.56 Chitrakut 0.8 0.55 Ghazipur 0.48 0.54 
Badaun 0.65 0.61 Pratapgarh 0.63 0.54 Chandauli 0.3 0.53 
Bareilly 0.67 0.63 Kaushambi 0.44 0.52 Varanasi 0.46 0.53 



SMALL AREA ESTIMATION - AN OVERVIEW 

 

19.11 
 

Pilibhit 0.65 0.59 Allahabad 0.54 0.53 St. Ravidas 
Nr 

0.33 0.54 

Shahjahanpur 0.75 0.61 Barabanki 0.68 0.59 Mizapur 0.29 0.52 
Kannauj 0.5 0.58 Faizabad 0.57 0.55 Shanbhadra 0.58 0.52 

 
Table 5: Direct estimates and model-based estimates of proportion of indebted farm 
households for Cat 4 

District Direct Model 
based 

District Direct Model 
based 

District Direct Model 
based 

Saharanpur 0.83 0.69 Etawah 0.5 0.62 Ambedker 
Nr 

0.6 0.63 

Muzaffarnagar 0.71 0.68 Auraya 0.67 0.63 Sultanpur 0.69 0.63 
Bijnor 0.6 0.65 Kheri 0.6 0.66 Bahraich 0.82 0.65 
Moradabad 0.67 0.67 Sitapur 0.75 0.66 Srawasti 0.75 0.63 
Rampur 0.5 0.66 Hardoi 0.55 0.63 S.Kabir Nr 0.75 0.62 
J.B.P.Nr 0.75 0.63 Unnao 0.64 0.64 Kushi Nagar 0.54 0.61 
Meerut 0.62 0.66 Lucknow 0 0.62 Balrampur 0.6 0.62 
Baghpat 0.2 0.62 Raibarely 0.86 0.66 Gonda 0.63 0.63 
Ghaziabad 0.75 0.65 Kanpur 

Dehat 
0.83 0.65 Sidharth Nr 0.63 0.62 

Bulad Shahar 0.63 0.65 Kanpur Nr 1 0.64 Basti 0.89 0.65 
Aligarh 0.73 0.69 Fatehpur 0.67 0.62 Maharajganj 0.5 0.62 
Mathura 0.55 0.65 Jalaun 0.93 0.68 Gorakhpur 0.6 0.63 
Hathras 0.8 0.64 Jhanshi 0.78 0.65 Deoria 0.31 0.61 
Agra 0.5 0.63 Lalitpur 0.57 0.63 Azamgarh 0.56 0.62 
Firozabad 1 0.65 Hamirpur 0.82 0.65 Mau 0.67 0.63 
Etah 0.33 0.65 Mahoba 0.46 0.61 Ballia 0.5 0.61 
Farukhabad 0.83 0.65 Banda 0.77 0.64 Jaunpur 0.33 0.59 
Mainpuri 0.63 0.63 Chitrakut 0.33 0.62 Ghazipur 0.5 0.62 
Badaun 0.46 0.64 Pratapgarh 0.58 0.62 Chandauli 0.71 0.63 
Bareilly 0.43 0.65 Kaushambi 0.67 0.62 Varanasi 1 0.63 
Pilibhit 0.57 0.64 Allahabad 0.67 0.63 St. Ravidas 

Nr 
0.33 0.62 

Shahjahanpur 1 0.67 Barabanki 0.9 0.67 Mizapur 0.63 0.62 
Kannauj 1 0.66 Faizabad 0.71 0.63 Shanbhadra 0.54 0.61 

  
Table 6: Direct estimates and model-based estimates of proportion of indebted farm 
households for Cat 5 

District Direct Model 
based 

District Direct Model 
based 

District Direct Model 
based 

Saharanpur 0.33 0.62 Etawah 1 0.79 Ambedker 
Nr 

0.8 0.64 

Muzaffarnagar 0.75 0.55 Auraya 0.5 0.77 Sultanpur 0.4 0.55 
Bijnor 0.75 0.69 Kheri 0.67 0.61 Bahraich 0.5 0.63 
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Moradabad 1 0.63 Sitapur 0.8 0.68 Srawasti  0.74 
Rampur 1 0.7 Hardoi 0.67 0.73 S.Kabir Nr 0.71 
J.B.P.Nr 1 0.79 Unnao 1 0.7 Kushi Nagar 0.5 
Meerut 1 0.68 Lucknow 1 0.74 Balrampur 1 0.59 
Baghpat 1 0.75 Raibarely 0.4 0.55 Gonda 0 0.66 
Ghaziabad 0.5 0.73 Kanpur 

Dehat 
0.6 0.73 Sidharth Nr 0.8 0.6 

Bulad Shahar 0.63 0.66 Kanpur Nr 0.69 Basti 0.78 0.68 
Aligarh 0.25 0.6 Fatehpur 0.75 0.57 Maharajganj 0.5 0.56 
Mathura 0 0.65 Jalaun 1 0.68 Gorakhpur 1 0.56 
Hathras  0.76 Jhanshi 0.75 0.7 Deoria 0.5 0.64 
Agra  0.74 Lalitpur 1 0.76 Azamgarh 0.67 0.53 
Firozabad 0.77 Hamirpur 0.25 0.7 Mau 0.67 0.7 
Etah  0.67 Mahoba 0.8 0.72 Ballia 1 0.58 
Farukhabad 0.77 Banda 1 0.64 Jaunpur 0.44 0.62 
Mainpuri 1 0.79 Chitrakut 0.5 0.71 Ghazipur 0.33 0.57 
Badaun 1 0.72 Pratapgarh 1 0.59 Chandauli 1 0.7 
Bareilly 0.75 0.7 Kaushambi 0.5 0.6 Varanasi 0.5 0.73 
Pilibhit 0 0.75 Allahabad 0.33 0.42 St. Ravidas Nr 0.78 
Shahjahanpur 1 0.73 Barabanki 0.5 0.59 Mizapur 0.5 0.56 
Kannauj 1 0.76 Faizabad 1 0.65 Shanbhadra 0.33 0.61 

 
The graphs representing the district-wise coefficient of variation for direct (thick line) and 
model-based estimate (dotted line) for Cat0- Cat5 are given below: 

  

Cat 0 Cat 1 
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Cat 2 Cat 3 

  

Cat 4 Cat 5 

Conclusion: The model-based district level estimates for different land holding classes 
have reasonably good precision as compared to direct estimates. The SAE method has also 
generated reliable estimates for the districts with zero or very small sample sizes. 

5.2 EBLUP estimate of crop yield at sub-district level in Hisar district, Haryana, India 
using MODIS/Terra data (Muhammed et al., 2020) 
Objective: Obtaining EBLUP estimate of crop yield at sub-district level in Hisar district, 
Haryana, India using MODIS/Terra data. 
Data: MODIS/Terra Data Acquisition: MODIS/Terra is a satellite sensor that provides 
various spectral bands, including visible, near-infrared, and thermal infrared, suitable for 
monitoring vegetation health and crop conditions. Time-series data from MODIS/Terra 
were acquired for the study area in Hisar district, Haryana. 
Crop Yield Sampling and Ground Truth Data: A systematic random sampling approach was 
used to collect ground truth data, including crop yield, from selected sub-districts within 
Hisar district. These data served as reference points for model calibration and validation. 
Methodology: Spatial Analysis and Preprocessing: MODIS/Terra data were pre-processed 
to extract relevant vegetation indices (e.g., NDVI) and environmental variables (e.g., 
temperature, precipitation). The data were then spatially aligned with the ground truth 
points using geospatial techniques. 
Area level random effect model was used to derive EBLUP estimate of crop yield by 
considering 𝑦𝑦𝑖𝑖 denote the observed direct estimate of the unobservable population-level 
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quantity (e.g. average yield) 𝑌𝑌𝑖𝑖 of variable of interest y for area (or sub district) 𝑖𝑖. Let 𝑋𝑋𝑖𝑖 be 
the known auxiliary variable, obtained from NDVI data set, related to the population mean 
𝑌𝑌𝑖𝑖. The area specific Fay and Herriot model takes into account both the spatial and temporal 
variations in crop growth conditions to generate accurate predictions. EBLUP incorporates 
the observed data, covariate information, and residual errors to estimate crop yield at 
unsampled locations. 
Software used: ArcGIS and ENVI software’s were used for processing and analysing 
geospatial imagery and Fay–Herriot model based EBLUP estimator was generated using 
SAE package in R software interface 
Results: The authors generated Direct and EBLUP estimates for rice and wheat crop yield 
by using selected covariates along with CV. The estimated CVs for model-based estimates 
are much more precise than direct estimates which are given in below tables. 

Rice yield 
Block Sample 

size 
Direct 

estimate 
CV(%) EBLUP 

Estimate 
Yi~NDVI 

CV(%) RMSE EBLUP 
Estimate 

Yi~iNDVI 

CV(%) RMSE 

Adampur 14 3420.91 14.84 3048.09 10.07 307.09 3818.48 9.62 367.38 
Agroha 17 2849.72 10.18 3092.3 9 278.18 3018.37 7.76 234.37 
Barwala 36 3068.55 8.89 3042.7 8.09 246.22 2834.2 7.8 221.02 
Hisar 1 36 2662.48 9.03 2687.11 8.27 222.21 2511.55 8.78 220.62 
Hisar 2 11 3451.85 5.58 3325.93 5.76 191.51 3325.06 6.09 202.47 
Uklana 12 2538.8 13.51 2565.18 10.64 273.01 2493.6 9.51 237.07 

Narnaund 31 1827.91 12.76 2070.24 10.77 222.91 2127.52 10.4 221.34 
Hansi 1 36 2620.21 8.55 2577.83 8.33 214.86 2695.14 7.68 207.03 
Hansi 2 22 2615.9 7.81 2534.32 8.06 204.24 2574.73 7.81 201.05 

Wheat yield 
Block Sample 

size 
Direct 

estimate 
CV 
(%) 

EBLUP 
Estimate 
Yi~NDVI 

CV 
(%) 

RMSE EBLUP 
Estimate 

Yi~iNDVI 

CV 
(%) 

RMSE 

Adampur 24 4863.61 8.58 4697.84 6.69 314.11 4813.19 6.32 304.22 
Agroha 23 4866.9 6.21 4941.07 6.34 313.04 4966.83 6.29 312.47 
Barwala 38 5077 9.71 5037.23 3.81 191.76 5076.5 4.01 203.58 
Hisar 1 46 4902.53 6.71 4975.01 5.74 285.51 4927.9 6.02 296.85 
Hisar 2 39 4773.34 13.95 4505.52 8.49 382.66 4778.34 5.87 280.32 
Uklana 12 5304.65 4.31 5167.33 8.19 423.21 5079.92 8.17 414.9 

Narnaund 31 5497.33 8.81 5263.49 5.03 264.77 5247.68 6.05 317.29 
Hansi 1 40 4825.95 9.26 4912.79 4.49 220.78 4926.1 4.61 227.29 
Hansi 2 22 4138.58 12.58 5065.51 3.66 185.18 5169.64 4.79 247.5 

 
Conclusion: The integration of remote sensing data and advanced statistical methods like 
EBLUP holds great potential for improving crop yield estimation and agricultural decision-
making. This study contributes to the advancement of precision agriculture and offers 
insights into enhancing agricultural resource management and policy formulation. The 
combination of remote sensing technology and advanced statistical modelling has the 
potential to revolutionize crop yield estimation practices, leading to more sustainable and 
productive farming practices. 
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1. Introduction 
For planned development of a country, information on various aspects of economy is 
required to be collected on regular basis. The information can be collected through 
Census i.e. complete enumeration of the population under study. However, the conduct of 
Census is very time consuming, involves massive operations requiring huge resources, 
besides, being subject to large errors. Consequently, these can only be conducted after 
fairly long time gaps, which vary from country to country. In India, while the Population 
and Economic Censuses are conducted every 10 years, the Agricultural and Livestock 
Censuses are conducted every five years. For obtaining information during the 
intervening periods, large scale sample surveys are resorted to so that reliable, timely and 
adequate information on the parameters of interest from large populations can be 
provided. In India, National Sample Survey Organisation (NSSO) carries out country 
wide surveys on various socio-economic parameters related to the national economy such 
as follow up enterprise surveys of Economic Census, Annual Survey of Industries, 
supervision of Area enumeration and Crop Estimation surveys conducted by the state 
agencies so that appropriate data can be made available for policy planning and decision 
making on various issues of National importance. Similarly, the crop cutting experiments 
are organized by the Directorate of Economics and Statistics of various States for 
estimation of yield rates of various crops under the scheme of General Crop Estimation 
Surveys (GCES). While the sample sizes for the surveys conducted by the NSSO are 
fixed in such a manner that it is possible to get reasonably precise estimates at the State 
level, the sample size in the GCES are adequate to provide estimates at the District level. 
The state or regional level estimates generated by these survey are often masked the local 
level variation. But, the NSSO data cannot be used directly to produce reliable 
disaggregate level (e.g. district or further disaggregate level) estimates due to small 
sample sizes. The emphasis on micro-level planning reliable estimates of various 
parameters of interest are being demanded by the administrators and policy planners at 
the small area level. Due to the lack of robust and reliable estimates at lower level, proper 
planning, fund allocation and also monitoring of various plans is likely to suffer. In the 
survey literature, an area (or domain) is regarded as small if the area-specific (or domain -
specific) sample is not large enough to support a direct survey estimator of adequate 
precision with unacceptably large coefficient of variation. A small area in the context of 
NSSO surveys may be a district while it may be a Community Development Block/ Gram 
Panchayat in case of GCES. In view of the demand for reliable statistics at the local level 
there is a burst of activity in the area of Small Area Estimation (SAE) technique. Newer 
techniques are increasingly being developed using tools of statistical inference and linear 
model. Simultaneously, attempts are also being made to apply these techniques so that 
precise estimates are available at the small/local area level. In many countries, SAE 
techniques are extensively used to produce the lower area level estimates, e.g. in United 
Kingdom the estimate of unemployment levels and rates for their Local Authority 
Districts (Ambler et al., 2001) and in United States the estimates of poor school-age 
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children at County level (Citro and Kalton, 2000). In India also, attempts have been made 
to use SAE techniques for various purposes (Sharma et al., 2004). 
The growing demand for small area statistics in recent years has increased the popularity 
of SAE techniques. In this context model-based methods are widely used (Rao, 2003, 
chapter 2). The underlying idea is to use statistical models to link the variable of interest 
with auxiliary information to define the model-based estimator for small areas. Since the 
area-specific direct estimators do not provide adequate precision, for generating estimates 
for small areas it is necessary to employ model-based estimators that “borrow strength” 
from the related area. Small area model based techniques can be classified into two broad 
types: (i) area level random effect models, which are used when auxiliary information is 
available only at area level; these relate small area direct estimators to area-specific 
covariates (Fay and Herriot, 1979), and (ii) nested error unit level regression models, 
employed originally by Battese, Harter and Fuller (1988) for predicting areas under corn 
and soybean in 12 counties of the state of Iowa in the U.S.; these models relate the unit 
values of a study variable to unit-specific covariates.  
The purpose of the study is to apply already available SAE technique. To achieve this we 
used NSS (2002-03 and 2004-05) and Agriculture census (1995-96) data to produce 
precise district level estimates. In particular, we employed an area level small area model 
to compute the empirical best linear unbiased predictor estimates and its mean squared 
error estimates because covariates, collected from Agriculture Census, are available at area 
level. Throughout this paper district and small area (or area) is used interchangeably 

2.  The Empirical Best Linear Unbiased Predictor for Small Areas  
In the small area estimation method used here the covariates are collected from the Census 
which are available at District level. Here Districts are small area of interest. Widely used 
‘area level random effects model’, is used because the auxiliary information is available 
only at the area level. This model was originally used by Fay and Herriot (1979) for the 
prediction of mean per capita income (PCI) in small geographical areas (less than 500 
persons) within counties in USA, often referred to as Fay and Herriot model (hereafter FH 
model). In area level model there are two components:  
(i) the direct survey estimate of the parameter based on the sampling design, expressed as  

 ,     1,...,d d dY y e d D= + = ,              (1) 

where D is total number of small areas that constitute our finite population, dy  are 
unobserved small area means (i.e., our parameter of interest), dY  are observed direct 
survey estimators (the sample mean in our case) and the de ’s are independent sampling 
errors of survey estimate with ( ) 0d dE e y =  and ( )d d dV e y v= . The model (1) is a 
sampling model and dv  is a design-based sampling variance.  

(ii)  A linking model  

, 1, ,zT
d d dy u d D= + =β  ,      (2) 

where zd  denotes p-vector of area (or District) level covariates, β  is a p-vector of 
unknown fixed-effect coefficients and du  is random effects (also called the model errors), 
assumed to be independent and identically distributed with ( ) 0dE u =  and 2( )d uV u σ= .  
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Combining (1) and (2), we obtain the model 

 , 1, ,zT
d d d dY u e d D= + + =β  .     (3) 

Clearly, the model (3) integrates a model dependent random effect du  and a sampling 
error de  with the two errors being independent. The model (3) is a special case of the 
linear mixed model. For known variance 2

uσ , assuming model (3) holds, the Best Linear 
Unbised Predictor (BLUP) for dy  (Henderson, 1963) is given by 

ˆ ˆ ˆ( ) (1 )z z zT T T
d d GLS d d d GLS d d d d GLSy Y Yγ γ γ= + − = + −β β β                   (4) 

where 2 2/( )d u d uvγ σ σ= +  and ( ) ( )12 1 2 1ˆ ( ) ( )z z zT
GLS d u d d d u d dd d

v v Yσ σ
−− −= + +∑ ∑β  is the 

generalised least square estimate of β . In practice, the variance 2
uσ  is usually unknown 

and they are replaced by sample estimates, 2ˆuσ  (in equation (4) and ˆ
GLSβ ) yielding the 

corresponding empirical BLUP (EBLUP) denoted by ˆdy . We note that the EBLUP ˆdy  is a 
linear combination of a direct estimate dY  and the model dependent regression synthetic 

estimate ˆzT
d GLSβ , with weights given by dγ . Here dγ  is called ‘shrinkage factor’ since it 

‘shrinks’ the direct estimator towards the synthetic estimator ˆzT
d GLSβ  (Rao, 2003, chapter 

5). 

Turning to mean squared error (MSE) estimation, if β  and 2
uσ  are also known, the 

variance of the BLUP (4) is given as  
2

1[ ( , )]d u d d dVar y v gσ γ= =β  

In practice, β  and 2
uσ  are estimated from the sample data and substituted for the true 

values, giving rise to the EBLUP. A naïve variance estimator is obtained by replacing 2
uσ  

by 2ˆuσ  in 1dg . This estimator ignores the variability of 2ˆuσ  and hence underestimates the 
true variance. Prasad and Rao (1990), extending the work of Kackar and Harville (1984) 
approximate the true prediction MSE of the EBLUP under normality of the two error 
terms and for the case where 2

uσ  is estimated by the ANOVA (fitting of constants) 
method as,  

2
1 2 3

ˆˆ ˆ[ ( , )]d u GLS d d dMSE y g g gσ = + +β                       (5)      

where 2
2

ˆ(1 ) ( )z zT
d d d GLS dg Varγ= − β  with ( ) 12 1ˆ( ) ( ) z zT

GLS d u d dd
Var v σ

−−= +∑β  is the excess in 

MSE due to estimation of β  and 4 2 2 3 2
3 ˆ[ /( ) ] ( )d Di Di u ug Varσ σ σ σ= + ×  is the excess in MSE 

due to estimation of 2
uσ . The neglected terms in the approximation are of order o(1/D). 

Building on the approximation, Prasad and Rao (1990) derive a MSE estimator of (5) 
with bias of order o(1/D) as, 

2 2 2 2
1 2 3

ˆˆ ˆ ˆ ˆ ˆ[ ( , )] ( ) ( ) 2 ( )d u GLS d u d u d umse y g g gσ σ σ σ= + +β .                        (6) 

where 2ˆ( )kd ug σ  is obtained from kdg  by substituting 2ˆuσ  for 2
uσ , k=1,2,3. The MSE 

estimator (6) is robust with respect to departures from normality of the random area 



APPLICATION OF SMALL AREA ESTIMATION USING LARGE-SCALE 
SURVEY DATA (CROP ESTIMATION SURVEY DATA, NSSO DATA ETC.) 

 

20.4 
 

effects du  (but not the sampling errors de ) (Lahiri and Rao, 1995). Here, standard error 
of the EBLUP is calculated as square root of MSE. Note that the leading term in (6) is 

1d d dg vγ=  so for the small values of dγ  (i.e., the model variance 2
uσ  is small relative to 

the sampling variance dv ), 2 ˆˆ ˆ[ ( , )] ( )d u GLS d D dMSE y v V Yσ << =β  illustrating the possible gains 
from using the model dependent estimator. Further, the availabilty of good auxiliary data 
is key to successful application of the small area technique since this provides a basis for 
good model fit. An excellent example of application of this method is in a study on Small 
Area Estimates of School-Age Children in Poverty in USA (Citro and Kalton, 2000). 

3.  Empirical study 
The theory described in the previous section has been applied to develop district level 
estimates using the NSSO data. SAE techniques were applied to produce reliable small 
area estimates of incidence of poverty at district level in the State of Bihar in India by 
linking data from the existing Household Consumer Expenditure Survey data and the 
Population Census.  
The incidence of poverty is defined as proportion of poor households, i.e. head count 
ratio (HCR). The HCR is poverty indicator or incidence measures the frequency of 
households under poverty line. Two types of variables are required for SAE analysis, the 
variable of interest and the auxiliary variables. In this study, the variable of interest for 
which small area estimates are required is drawn from the Household Consumer 
Expenditure Survey 2011-12 of NSSO for rural areas of the State of Bihar. The sampling 
design used in the NSSO data is stratified multi-stage random sampling with districts as 
strata, villages as first stage units and households as the second stage units. A total of 
3312 households were surveyed from the 38 districts of the Bihar.  
The district-wise sample size varied from minimum 64 to maximum 128 with average of 
87 (Table 1). From Table 1, it is evident that district level sample sizes are very small 
with very low values of average sampling fraction as 0.00025. From Table 1, it is evident 
that district level sample sizes are very small with very low values of average sampling 
fraction as 0.00025. Therefore, it is difficult to produce reliable estimates and their 
standard errors at district level. The SAE is an obvious choice for such cases. The SAE 
technique is expected to provide reliable estimates for the districts having small sample 
data [8, 9 and 10]. The target variable used for the study is poor households. The poverty 
line has been used to identify whether given household is poor or not. A household 
having monthly per capita consumer expenditure below the state’s poverty line (Rs 778) 
is categorized as poor household. The poverty line used in this study is same as those of 
year 2011-12, given by then planning commission, Govt of India.  

Table 1. Distribution of district wise sample sizes (n), estimates of poverty incidence 
(Estimate) along 95 % confidence interval (95% CI) and percentage coefficient of 
variation (% CV) generated by direct survey estimate (DIR) and model based small 
area estimate (SAE estimate) for Bihar. 

  
  
District 

  
  
N 

DIR estimate SAE estimate  
  

Estimate 
 95% CI   

% CV  
  

Estimate 
 95% CI   

% CV  Lower Upper  Lower Upper  
Pashchim Champaran 96 0.34 0.25 0.44 14.55 0.33 0.24 0.42 14.06 
Purba Champaran 128 0.13 0.07 0.18 24.00 0.14 0.08 0.19 20.50 
Sheohar 64 0.30 0.18 0.41 20.21 0.28 0.18 0.38 18.34 
Sitamarhi 96 0.38 0.28 0.47 13.33 0.36 0.27 0.45 12.96 
Madhubani 128 0.10 0.05 0.15 29.54 0.12 0.06 0.17 22.81 
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Supaul 64 0.05 -0.01 0.10 64.00 0.09 0.03 0.14 33.28 
Araria 96 0.07 0.02 0.13 41.14 0.10 0.04 0.15 27.56 
Kishanganj 64 0.09 0.02 0.17 42.67 0.12 0.05 0.19 29.11 
Purnia 88 0.27 0.18 0.37 18.33 0.26 0.18 0.35 16.94 
Katihar 88 0.18 0.10 0.26 22.00 0.19 0.11 0.26 20.94 
Madhepura 64 0.00 0.00 0.00 0.00 0.06 0.02 0.10 37.27 
Saharsa 64 0.08 0.01 0.14 38.40 0.11 0.04 0.17 31.00 
Darbhanga 128 0.23 0.16 0.31 17.07 0.23 0.16 0.30 15.47 
Muzaffarpur 128 0.23 0.16 0.31 17.07 0.23 0.16 0.29 15.33 
Gopalganj 96 0.21 0.13 0.29 19.20 0.20 0.13 0.28 19.17 
Siwan 96 0.29 0.20 0.38 17.14 0.28 0.20 0.37 15.40 
Saran 128 0.16 0.09 0.22 19.20 0.16 0.10 0.22 18.75 
Vaishali 96 0.09 0.04 0.15 32.00 0.12 0.06 0.18 25.64 
Samastipur 128 0.17 0.11 0.24 17.45 0.18 0.11 0.24 17.97 
Begusarai 96 0.06 0.01 0.11 32.00 0.09 0.04 0.14 29.73 
Khagaria 64 0.09 0.02 0.17 42.67 0.12 0.05 0.19 28.87 
Bhagalpur 96 0.18 0.10 0.25 22.59 0.18 0.11 0.25 20.14 
Banka 64 0.22 0.12 0.32 22.86 0.22 0.13 0.31 21.42 
Munger 64 0.27 0.16 0.38 22.59 0.25 0.15 0.35 20.08 
Lakhisarai 64 0.16 0.07 0.25 32.00 0.16 0.08 0.23 25.64 
Sheikhpura 64 0.17 0.08 0.27 29.09 0.17 0.09 0.25 24.96 
Nalanda 96 0.29 0.20 0.38 17.14 0.28 0.19 0.36 15.85 
Patna 96 0.30 0.21 0.39 16.55 0.29 0.21 0.38 14.98 
Bhojpur 96 0.38 0.28 0.47 13.33 0.35 0.26 0.44 13.06 
Buxar 64 0.34 0.23 0.46 17.45 0.31 0.20 0.41 17.43 
Kaimur  64 0.23 0.13 0.34 21.33 0.22 0.13 0.31 21.03 
Rohtas 96 0.33 0.24 0.43 15.00 0.31 0.22 0.40 14.47 
Jehanabad  64 0.27 0.16 0.38 22.59 0.26 0.16 0.35 19.53 
Aurangabad 64 0.19 0.09 0.28 26.67 0.19 0.11 0.28 23.17 
Gaya 128 0.20 0.13 0.26 20.48 0.19 0.13 0.26 17.27 
Nawada 64 0.16 0.07 0.25 32.00 0.16 0.08 0.24 25.45 
Jamui 64 0.39 0.27 0.51 15.36 0.34 0.24 0.45 15.92 
Arwal 64 0.20 0.10 0.30 24.62 0.19 0.10 0.28 23.79 

The auxiliary variables used are collected drawn from the Population Census 2011. 
There are around 50 covariates available from Population Census 2011 to consider for 
small area modelling. However, we developed a composite score for selected group of 
variables using Principal Component Analysis (PCA). We first divided the selected 
number of variables in three groups and then considered PCA for these groups of 
variables. The first PCA (denoted by 1X ) is based on gender-wise literacy rate and 
gender-wise worker population. The first principal component for first group of PCA 
( 11X ) explained 52% of the variability in the dataset, while adding the second component 
( 12X ) explained 100%. A second PCA ( 2X ) is based on following group of variables; 
gender-wise main worker, gender-wise main cultivator and gender-wise main 
agricultural labourers. The first principal component ( 21X ) for second group of PCA 
explained 67% of the variability in the dataset, while adding the second component 
( 22X ) explained 94%. Finally, the third PCA ( 3X ) is derived from gender-wise marginal 
cultivator and gender-wise marginal agriculture labourers. The first principal component 
( 31X ) for third group of PCA explained 52% of the variability in the dataset, while 
adding the second component ( 32X ) explained 77%. These six PCA scores (i.e. 

11 12 21 22 31, , , ,X X X X X and 32X ) developed from three group of variables were then used 
as auxiliary variables. We fitted a generalised linear model using direct survey estimates 
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of proportion of poor households as response variable and these six variables (i.e. 
11 12 21 22 31, , , ,X X X X X  and 32X ) as covariates. The selected model with three significant 

covariates 11,X 21X and 31X  have residual deviance and AIC values as 327.18 and 
636.89 respectively. These three covariates 11,X 21X  and 31X are used in SAE.  

Let us assume a finite population U of size N and a sample s of size n is drawn 
from this population with a given survey design. We assume that this population is 
consist of D small areas or small domains (or simply areas or domains) ( 1,..., )dU d D=  

such that 
1

D
dd

U U
=

=


and 
1

D
dd

N N
=

=∑ . Throughout, we use a subscript d to index the 

quantities belonging to small area d ( 1,..., )d D= , where D  is the number of small areas 
(or areas) in the population. The subscript s and r are used for denoting the quantities 
related to the sample and non-sample parts of the population. So that dn  and dN  
represent the sample and population (i.e., number of households in sample and 
population) sizes in district d , respectively. Let ds  denotes the part of sample from area 

d such that  
1

D
dd

s s
=

=


 and 
1

.D
dd

n n
=

=∑  Let diy  denotes the value of target variable of 
interest y  for unit i in small area d. Let assume that the variable of interest y is binary and 
the target is the estimation of population counts 

d
d dii U

y y
∈

=∑ or population proportions 

( )1

d
d d dii U

P N y−
∈

= ∑ in area d.  The direct estimator of proportion of poor household is 

( ) ( )1
ˆ

d d

Direct
d di di dii s i s

p w w y
−

∈ ∈
= ∑ ∑ , where diw  is the survey weight associated with 

household i in area d. Assuming that joint inclusion ,1/ 0di d jw ′ =  for d d ′≠ or i j≠ , the 
estimate of variance  of ˆ Direct

dp  is 

( ) { }2
2ˆ ˆ( ) ( 1)( )

d d

Direct Direct
d di di di di di s i s

v p w w w y p
−

∈ ∈
= − −∑ ∑ . Let us denote by sdy  and rdy  

the sample and non-sample counts of poor households in area (or district) d. The sample 
count sdy  has a Binomial distribution with parameters dn  and dπ , denoted by 

~ ( , )sd d dy Bin n π , where dπ  is the probability of a poor household in area d, often 
termed as the probability of a ‘success’. Similarly, ~ ( , )rd d d dy Bin N n π− . Further, sdy  
and rdy  are assumed to be independent Binomial variables with dπ  being a common 
success probability. Here we assume that only aggregated level data is available for the 
modelling. For example, from survey data sdy  and from secondary data sources (i.e. 
Census and Administrative records etc) dx  the p-vector of the covariates are available for 
area d. Following [4 and 6], the model linking the probabilities of success dπ  with the 
covariates dx is the logistic linear mixed model given by 

( ) ln
1

Td
d d d d

d

logit uππ η
π

 
= = = + − 

x β ,      

 (1) 
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where β  is the p-vector of regression coefficient often known as fixed effect parameters 
and du  is the area-specific random effect that accounts for between area dissimilarity 
beyond that explained by the auxiliary variables included in the in the fixed part of the 
model. We assume that du ’s are independent and normally distributed with mean zero 
and variance ϕ . Under model (1),  

{ } { } 11exp( ) 1 exp( ) exp( ) 1 exp( ) expit( )T T T
d d d d d d d d du u uπ η η

−−= + = + + + = +x x xβ β β

.  
It is noteworthy that model (1) relates the area level proportions to area level covariates. 
This type of model is often referred to as ‘area-level’ model in SAE terminology. Area 
level model was originally proposed by Fay and Herriot [1979]. The Fay and Herriot 
method for SAE is based on area level linear mixed model and their approach is 
applicable to a continuous variable. The model (1) on the other hand is a special case of a 
generalized linear mixed model (GLMM) with logit link function and suitable binary 
variable. Here,  

    ( )|  Binomial , expit( )T
ds d d d dy u n u+x β  and 

( )|  Binomial , expit( )T
dr d d d d dy u N n u− +x β . This leads to 

( )| expit( )T
sd d d d dE y u n u= +x β  and ( ) ( )| expit( )T

rd d d d d dE y u N n u= − +x β . Collecting 
the area level models (1), we can write the model at population level as  

( )g = = +η Xβ Zuπ .       
 (2) 

Here 1( ,..., )T
Dπ ππ = , 1=( ,...., )T T T

DX x x  is a D p×  matrix, Z  is a D D×  diagonal matrix 
and 1( ,..., )T

Du u=u  is a vector of 1D×  of area random effects, which is normally 
distributed with mean zero and variance Dφ= IΩ . Here, DI  is a D D×  diagonal matrix. 
Note that estimation of fixed effect parameters β  and area specific random effects du ’s 
uses the data from all small areas. We used an iterative procedure that combines the 
Penalized Quasi-Likelihood (PQL) estimation of β  and u  with restricted maximum 
likelihood (REML) estimation of φ  to estimate these unknown parameters.  

Let us write the total population counts, i.e. the total number of poor households 
in district d as d sd rdy y y= + , where the first term sdy , the sample count is known whereas 
the second term rdy , the non-sample count, is unknown. Therefore, a plug-in empirical 
best predictor (EBP) of the population count in area d is  

( ) ( ) ˆˆˆ ˆ| expit( )EBP T T
i si rd d si d d i iy y E y u y N n  = + = + − + x Z uβ ,  

 (3) 

where ( )0,..,1,.,0T
i =Z  is 1 D×  vector with 1 in position i-th. An estimate of proportion 

in area d is obtained as 1ˆ ˆEBP EBP
d d dp N y−= . For area with zero sample sizes (i.e. non-sampled 

areas), the conventional approach for estimating area proportions or counts is synthetic 
estimation, based on a suitable GLMM fitted to the data from the sampled areas [4]. 
Under (1), for non-sampled areas, the synthetic type predictor of total population count 
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for area d is ,
ˆˆ expit( )SYN T

d d d outy N= x β , where ,d outx  denote the vector of covariates 
associated with non-sampled area d. 

The mean squared error (MSE) estimates are computed to assess the reliability of 
estimates and also to construct the confidence interval for the small area estimates. 
Estimation of the MSE of the EBP (3) is followed from development reported in [4,6,7 
and 11] and references therein. Let us denote by { }ˆ ˆ ˆ(1 )EBP EBP

sd d d ddiag n p p= −V  and 

{ }ˆ ˆ ˆ( ) (1 )EBP EBP
rd d d d ddiag N n p p= − −V , the diagonal matrices defined by the corresponding 

variances of the sample and non-sample part respectively. Similarly, { }1 ˆ( )d rddiag N −=A V , 

{ }{ }1 ˆ ˆˆ( )d rd sddiag N − −B = V X A V XΣ  and ( ) 11 ˆˆ
D sdφ

−
−= I V+Σ , where DI  is an identity 

matrix of order D. We further define { } 1

(1)
ˆ ˆ ˆ ˆˆT T

sd sd sd

−
= −V X V X X V V XΣ  and 

(2) (1)
ˆ ˆ ˆ ˆˆ ˆ ˆT T

sd sd+V V XV X V= Σ Σ Σ . With these notations, assuming model (1) holds, the MSE 
estimate of (3) is given by 

1 2 3
ˆ ˆ ˆˆ( ) ( ) ( ) 2 ( )EBP

dmse p m m mφ φ φ= + + .     
 (4) 

The first two components m1 and m2 constitute the largest part of the overall MSE 
estimates in (4). These are the MSE of the best linear unbiased predictor type estimator 
when φ  is known [11]. The third component m3 is the variability due to the estimate of φ.  
The three components of (4) are defined as follows: 

1
ˆ ˆ( ) Tm φ = A AΣ , 2 (1)

ˆ ˆ( ) Tm φ = BV B , and ( )3
ˆ ˆˆ ˆˆ( ) (T

i jm trace vφ φ+= ∇ ∇ )Σ   with 
ˆˆ ˆ ˆˆ T

sd D sd sdφ+ = +V I V VΣ .  

Here ˆ(v φ )  is the asymptotic covariance matrix of the estimates of variance components 
φ̂ , which can be evaluated as the inverse of the appropriate Fisher information matrix for 
φ̂ . Note that this also depends upon whether we are using ML or REML estimates for φ̂ . 

We used REML estimates for φ̂ , then ( ) 12 4
1 11

ˆ ˆ ˆ( 2 ( 2 )v D a aφ φ φ
−

− −− +) =  with 
1

1 (2)
ˆ ˆ( )a traceφ−= V  and 11 (2) (2)

ˆ ˆ( )a trace= V V . Let us write ˆ∆ = AΣ  and 

ˆ ˆ
ˆ ˆ( ) ( )i i iφ φ φ φ

φ φ
= =

∇ = ∂ ∆ ∂ = ∂ ∂AΣ  , where iA  is  the thi  row of the matrix A . 

In SAE application, generally two types of diagnostics measures are suggested 
and employed, the model diagnostics and the diagnostics for the small area estimates see 
[3 and 4]. The model diagnostics are applied to verify the assumptions of underlying 
model, i.e. how well working model is fitted to data. The random district specific effects 
in model (1) are assumed to have an independent and identical normal distribution with 
mean zero and fixed varianceφ . If the model assumptions are satisfied then the district 
level residuals from model (1) are expected to be randomly (i.e., pattern less) distributed 
and not significantly different from the regression line y=0. Fig 1 shows histogram (left), 
normal probability plot of district level residuals (centre) and distribution of district level 
residuals (right). From Fig 1, it appears that district level residuals are randomly 
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distributed and the line of fit does not significantly differ from the line y=0. The 
histogram and q-q plot also confirm the normality assumption for random area effects. 
Therefore the model diagnostics are fully satisfied for the data.  

Second set of diagnostics is used for assessing the reliability and the validity of the small 
area estimates. Such diagnostics are suggested in [3]. Model-based small area estimates 
should be (a) consistent with unbiased direct survey estimates and (b) more precise than 
direct survey estimates. The values for the model-based small area estimates derived from 
the fitted model should be consistent with the unbiased direct survey estimates, wherever 
these are available, i.e. they should provide an approximation to the direct survey 
estimates that is consistent with these values being "close" to the expected values of the 
direct estimates. The model-based small area estimates should have mean squared errors 
significantly lower than the variances of corresponding direct survey estimates. For this 
purpose, we consider three commonly used measures namely the bias diagnostics, percent 
coefficient of variation (CV) and the 95 percent confidence intervals for small area 
estimates diagnostics. 

The bias diagnostics is used to investigate if the small area estimates are less 
extreme when compared to the direct survey estimates, when it is available. In addition, if 
direct estimates are unbiased, their regression on the true values should be linear and 
correspond to the identity line. If small area estimates are close to the true values the 
regression of the direct estimates on the model-based estimates should be similar. We 
plotted direct estimates on y-axis and model based small area estimates on x-axis and we 
looked for divergence of regression line from y= x and test for intercept = 0 and slope = 1. 
The bias scatter plot of the direct survey estimates against the model based small area 
estimates for EBP is given in Fig 2. The bias diagnostics plot in Fig 2 indicates that the 
small area estimates generated by EBP are less extreme when compared to the direct 
survey estimates, demonstrating the typical SAE outcome of shrinking more extreme 
values towards the average. That is, the estimates of poverty incidence generated by EBP 
method lies along the line y= x for most of the districts which indicates that they are 
approximately design unbiased. 
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We also used Goodness of Fit (GoF) diagnostic. This diagnostic tests whether the direct 
and model-based estimates generated by EBP are statistically different. The null 
hypothesis is that the direct and model-based estimates are statistically equivalent. The 
alternative is that the direct and model-based estimates are statistically different. The GoF 
diagnostic is computed using the following Wald statistic for EBP  estimate: 

  ( )
 

2Direct estimate - EBP estimate
(Direct estimate ) (EBP estimate )

d d
d

d d

W
Var MSE

  =  
+  

∑ . 

The value from the test statistic is compared against the value from a chi square 
distribution with D degrees of freedom. For our analysis, this is the chi square value with 
D=38 degrees of freedom which is 24.88 at 5% level of significance. For EBP, the value 
of Wald statistic is W=11.81. A smaller value (less than 24.88 in this case) indicates no 
statistically significant difference between model-based estimates generated by EBP and 
direct estimates. The diagnostic results clearly show that EBP estimates are consistent 
with direct estimates. We also examine the aggregation of direct and model based EBP 
estimate at state level. We computed state level incidence of poverty by aggregating the 
direct estimates as Direct estimate ( Direct estimate ) /d d dd d

N N= ×∑ ∑ and model based 

estimates as Model based estimate = ( EBP estimate ) /d d dd d
N N×∑ ∑ . The state level 

estimate of incidence of poverty by direct and EBP methods are 0.200 and 0.202 
respectively. As one expects, model based estimate are aggregated well to state level 
direct estimate.  

We use the percent CV to assess the comparative precision of model-based small 
area estimates (EBP) and direct survey estimates. The CVs show the sampling variability 
as a percentage of the estimate. Estimates with large CVs are considered unreliable (i.e. 
smaller is better). In general, there are no internationally accepted tables available that 
allow us to judge what is "too large". Different organization used different cut off for CV 
to release their estimate for the public use. For example, Office for National Statistics, 
United Kingdom has cut off CV value of 20% for acceptable estimates. The % CV of 
direct and EBP estimates are in given in Table 1. Fig 3 presents the district wise 
distribution of % CV for the model-based estimates and direct estimates. The results in 
Table 1 and district wise values in Fig 3 clearly show that direct estimates for small area 
poverty incidence are unstable with CV varies from 13.33% to 64 % with average of 
24.69. The % CV of EBP ranges from 12.96 % to 37.27 % with average of 21.19%. In 
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Fig 3 and Table 1 we further notice that for direct estimates CVs are greater than 20% and 
30% in 22 and 9 (out of 38) districts respectively. These results clearly reveal the model-
based small area estimates generated by EBP are reliable. In contrast, the direct estimates 
are very unstable.  

The districts-wise 95 percent confidence intervals (95% Cis) of the EBP and the direct 
estimates are shown in Fig 4. It is important to note that the 95% CIs for the direct 
estimates are calculated assuming a simple random sample generated the simple 
proportions. This ignores the effects of differential weighting and clustering within 
districts that would further inflate the true standard errors of the direct estimates. The 
standard errors of the direct estimates are too large and therefore the estimates are 
unreliable. In Fig 4, we observe that 95% CIs for the direct estimates are wider than the 
95% CIs for the EBP estimates. It indicates that the 95% CIs for the EBP estimates are 
more precise and contain both direct and EBP estimates of incidence of poverty. 

 
The spatial mapping district-wise poverty incidence for the State of Bihar is shown in Fig 
5. This map provides the spatial inequality in distribution of poverty incidence, i.e. the 
degree of inequality with respect to distribution of proportion of poor households in 
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different districts. This map is very useful in identifying the districts and regions with low 
and high level of poverty incidence in the state. The district-wise poverty incidence 
generated by EBP method in rural areas of Bihar ranges from 6 to 36% with average of 
21%. From Fig 5, it can be seen that Madhepura (6 %) has lowest poverty incidence in 
the state. Supaul, Begusarai, Araria, Saharsa, Madhubani, Vaishali, Kishanganj, Khagaria 
and Purba Champaran have smallest poverty rate (9-14%) whereas Buxar, Rohtas, 
Pashchim Champaran, Jamui, Bhojpur and Sitamarhi have highest rate of poverty 
incidence (31-36%). This map clearly shows that districts bordering with eastern Uttar 
Pradesh have higher poverty incidence. The district level estimates as well as spatial maps 
of poverty rates are expected to provide invaluable information to policy-analysts and 
decision-makers for identifying the regions and districts requiring more attention in the 
State. This application and description of methodology can also be used a guideline for 
other application of SAE in different survey data as well as data from other countries.  

 
Conclusions 

Theory of SAE method for estimation of proportions for small areas is well 
developed, however, application in the area of agricultural or social sciences are not so 
popular. In developed countries like USA, UK, Australia etc., SAE has been initiated and 
included as a part of their objectives in the national statistical offices. Need of small area 
statistics has been felt in different agencies and organization in India, but, not much 
initiative has been taken place. In India, Censuses are usually limited as they tend to focus 
mainly on the basic socio-demographic and economic data and not available for every 
time period. On the other hand, country is fortunate to have regular NSSO survey for 
generating number of socio-economic indicators. The NSSO surveys are aimed to 
generate estimates at national and state level. They do not provide sub-state level 
statistics. The SAE can be used as cost effective and efficient approach for generating 
reliable micro level statistics from existing survey data and using auxiliary information 
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from different published sources. The results clearly indicates the advantage of using 
SAE technique to cope up the small sample size problem in producing the estimates or 
reliable confidence intervals. It is evident that model based SAE method brings gain in 
efficiency in district level estimates. Disaggregate level estimates of poverty incidence 
and poverty mapping are useful information for identifying the districts/regions with 
higher level of poverty rate. These information can be used by state government in 
allocation of budget in various government schemes. 
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MS-EXCEL: STATISTICAL PROCEDURES 
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Introduction:  

Microsoft (MS) Excel ( ) is a powerful spreadsheet that is easy to use and allows you to 
store, manipulate, analyze, and visualize data. It also supports databases, graphic and 
presentation features. It is a powerful research tool and needs a minimum of teaching. 
Spreadsheets offer the potential to bring the real numerical work alive and make statistics 
enjoyable. But the main disadvantage is that some advanced statistical functions are not 
available and it takes a longer computing time as compared to other specialized software. 
 

 
 
Data Entry in Spreadsheets 

• Data entry should be started soon after data collection in the field  

• The raw data collected should be entered directly into computer. Calculations (e.g. % dry 
matter) or conversions (e.g. kg/ha to t/ha) by hand will very likely result in errors and 
therefore require more data checking once the data are in MS-Excel. Calculations can be 
written in MS-Excel using formulae (e.g. sum of wood biomass and leaf biomass to give 
total biomass).  

 

Data Checking 
One can use calculations and conversions for data checking. For example, if the collected 
data is grain yield per plot it may be difficult to see whether the values are 
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reasonable. However, if these are converted to yield per hectare then one can compare the 
numbers with our scientific knowledge of grain yields. Simple formulae can be written to 
check for consistency in the data.  For example, if tree height is measured 3 times in the year, 
a simple formula that subtracts 'tree height 1' from 'tree height 2'can be used to check the 
correctness of the data. The numbers in the resulting column should all be positive. We 
cannot have a shrinking tree! For new columns of calculated or converted data suitable 
header information (what the new column is, units and short name) at the top of the data 
should be included. 
 

Missing Values 
In MS-Excel the missing values are BLANK cells. It is useful to know this when calculating 
formulae and summaries of the data. For example, when calculating the average of a number 
of cells, if one cell is blank MS-Excel ignores this as an observation (i.e., the average is the 
sum/number of non-blank cells). But if the cell contains a '0' then this is included in the 
calculation (i.e., the average is the sum/no. of cells). In a column of 'number of fruit per plot', 
a missing value could signify zero (tree is there but no fruit), dead (tree was there but died so 
no fruit), lost (measurement was lost, illegible.) or not representative (tree had been browsed 
severely by goats). In this example, depending on the objectives of the trial, the scientist 
might choose to put a '0' in the cells of trees with no fruit and leave blank (but add 
comments) for the other 'missing values'. 
 

Pivot Tables (to check consistency between replicates)  
Variation between replicates is expected, but some level of consistency is also usual. We can 
use pivot tables to look at the data. A pivot table is an interactive worksheet table that quickly 
summarizes large amount of data using a format and calculation methods you choose. It is 
called pivot table because you can rotate its row and column heading around the core data 
area to give you different views of the source data. A pivot table provides an easy way for 
you to display and analyze summary information about data already created in MS-Excel or 
other application.  

• Keep the cursor anywhere within the data range 

• Choose “Insert” “Pivot Table” then “OK” 

• From the “Pivot table Field List” drag and drop the respective fields under  “Column 
Labels” , “Row Labels” and “Σ Values” 

• Select “Value Field Settings” by clicking on the down arrow in “Σ Values” and 
choose the appropriate option and then click “OK” 
 



MS-EXCEL: STATISTICAL PROCEDURES 

 21.3 

 
 
Scatter Plots (to check consistency between variates) 
We can often expect two measured variables to have a fairly consistent relationship with each 
other.  For example, 'number of fruits' with 'weight of fruits' or Stover yield plotted against 
grain yield.  To look for odd values we could plot one against the other in a scatter 
plot. Scatter plots are useful tools for helping to spot outliers.  This option is available under 
“Insert” menu. 
 

Line Plots (to examine changes over time) 
Where measurements on a 'unit' are taken on several occasions over a period of time it may 
be possible to check that the changes are realistic. A check back at the problematic data 
which is not in the usual trend can be made. .  This option is available under “Insert” menu. 
 

Double Data Entry 
One effective, although not always practical, way of checking for errors caused by data entry 
mistakes is double entry. The data are entered by two individuals onto separate sheets that 
have the same design structure. The sheets are then compared and any inconsistencies are 
checked with the original data. It is assumed that the two data entry operators will not make 
the same errors. There is no 'built-in' system for double entry in MS-Excel. However, there 
are some functions that can be used to compare the two copies. An example is the DELTA 
function that compares two values and returns a 1 if they are the same and a 0 otherwise. To 
use this function we would set up a third worksheet and input a formula into each cell that 
compares the two identical cells in the other two worksheets. The 0's on the third worksheet 
will therefore identify the contradictions between the two sets of data. This method can also 
be used to check survey data but for the process to work the records must be entered in 
exactly the same order in both sheets. If a section at the bottom of the third worksheet 
contains mostly 0's, this could indicate that you have omitted a record in one of the other 
sheets. 
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Preparing Data for Export to a Statistical Package 
Statistical analysis of research data usually involves exporting the data into a statistical 
package such as GENSTAT, SAS or SPSS. These packages require you to give the MS-
Excel cell range from which data are to be taken. In the latest editions of MS-Excel we can 
mark these ranges within MS-Excel and then transfer them directly into the statistical 
packages. 

• Highlight the data you require including the column titles (the codes which have been 
used to label the factors and variables).  

• Go to the Name Box, an empty white box at the top left of the spreadsheet. Click in this 
box and type a name for the highlighted range (e.g., Data). Press Enter. 

• From now on, when you want to select your data to export go to the Name Box and 
select that name (e.g. Data). The relevant data will then be highlighted. 

 
MS-Excel Help 
If you get stuck on any aspect of MS-Excel then use the Help facility by clicking “F1” key. It 
contains extensive topics and by typing in a question you can extract the required 
information.  See the snapshot below for an example: 

 
 
FEATURES OF MS-EXCEL 
Analytic Features 

• The windows interface includes windows, pull down menus, dialog boxes and mouse 
support 

• Repetitive tasks can be automated with MS-Excel. Easy to use macros and user 
defined functions 

• Full featured graphing and charting facilities 

• Supports on screen databases with querying, extracting and sorting functions 
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• Permits the user to add, edit, delete and find database records 
Presentation Features 

• Individual cells and chart text can be formatted to any font and font size  

• Variations in font size, style and alignment control can be determined 

• The user can add legends, text, pattern, scaling and symbols to charts. 

 
Charts and Graphs 
A chart is a graphic representation of worksheet data. The dimension of a chart depends upon 
the range of the data selected. Charts are created on a worksheet or as a separate document 
that is saved with an extension xlsx. MS-Excel automatically scales the axes, creates columns 
categories and labels the columns. Values from worksheet cells or data points are displayed 
as bars, lines, columns, pie slices, or other shapes in the chart. Showing a data in a chart can 
make it clearer, interesting and easier to understand. Charts can also help the user to evaluate 
his/her data and make comparisons between different worksheet values. 
Creating Line Chart 

• Select relevant part of data 

• Choose “Insert” “line” 

• Select an appropriate option of line chart and click 
Necessary changes in the chart can be done by clicking the right button of the mouse and 
choosing appropriate options. 
 

 
 
Sorting and Filtering 
MS-Excel makes it easy to organize, find and create report from data stored in a list. 
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Sort: To organize data in a list alphabetically, numerically or chronologically. 
(i) To sort entire list 

• Select a single cell in the list 

• Choose “data” “sort” 
(ii) Sorting column from left to right 

• Choose the “option” button in the sort dialog box 

• In the sort option dialog box, select “sort left to right” 

• Choose “OK” 
 

 
 
Filter: To quickly find and work with a subset of your data without moving or sorting it. 

• Choose “Data” and click on “Filter”  

• MS-Excel place a drop down arrow directly on the column labels of the list 

• Choose the column based on which the data has to be filtered. Clicking on the arrow 
displays a list of all the unique items in the column. Choose “Number Filter” option and 
define the required conditions. 
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STATISTICAL FUNCTIONS 
Excel’s statistical functions are quite powerful. In general, statistical functions take lists as 
arguments rather than single numerical values or text. A list could be a group of numbers 
separated by commas, such as (3,5,1,12,15,16), or a specified range of cells, such as 
(A1:A6), which is the equivalent of typing out the list (A1,A2,A3,A4,A5,A6). The function 
COUNT(list) counts the number of values in a list, ignoring empty or nonnumeric cells, 
whereas COUNTA(list) counts the number of values in the list that have any entry at all. 
MIN(list) returns a list’s smallest value, whereas MAX(list) returns a list’s largest value. The 
functions AVERAGE(list), MEDIAN(list), MODE(list), STDEV(list) all carry out the 
statistical operations you would expect (STDEV stands for standard deviation), when you 
pass a list of values as an argument.  

Create a Formula 
Formulas are equations that perform calculations on values in your worksheet. A formula 
starts with an equal sign (=). For example, the following formula multiplies 2 by 3 and then 
adds 5 to the result: =5+2*3. The following formulas contain operators and constants: 

 Example formula What it does 

=128+345 Adds 128 and 345 

=5^2 Squares 5 

• Click the cell in which you want to enter the formula.  

• Type = (an equal sign).  

• Enter the formula.  

• Press ENTER.  
Create a Formula that Contains References or Names: A1+23 
The following formulas contain relative references and names of other cells. The cell that 
contains the formula is known as a dependent cell when its value depends on the values in 
other cells. For example, cell B2 is a dependent cell if it contains the formula =C2. 

Example formula What it does 

=C2 Uses the value in the cell C2 

=Sheet2!B2 Uses the value in cell B2 on Sheet2 

=Asset-Liability Subtracts a cell named Liability from a cell named Asset 
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• Click the cell in which the formula enter has to be entered.  

• In the formula bar, type = (equal sign).  

• To create a reference, select a cell, a range of cells, a location in another worksheet, or a 
location in another workbook. One can drag the border of the cell selection to move the 
selection, or drag the corner of the border to expand the selection.  

• Press ENTER.  
Create a Formula that Contains a Function: =AVERAGE(A1:B4) 
The following formulas contain functions:  

Example formula  What it does  

=SUM(A:A) Adds all numbers in column A 

=AVERAGE(A1:B4) Averages all numbers in the range 

• Click the cell in which the formula enter has to be entered.  

• To start the formula with the function, click “insert function” on the formula bar.  

• Select the function.  

• Enter the arguments. When the formula is completed, press ENTER.  
 
Create a Formula with Nested Functions: =IF(AVERAGE(F2:F5)>50, SUM(G2:G5),0)  
Nested functions use a function as one of the arguments of another function. The following 
formula sums a set of numbers (G2:G5) only if the average of another set of numbers (F2:F5) 
is greater than 50. Otherwise it returns 0.  
 

STATISTICAL ANALYSIS TOOLS 
Microsoft Excel provides a set of data analysis tools — called the Analysis ToolPak — that 
one can use to save steps when you develop complex statistical or engineering analyses. 
Provide the data and parameters for each analysis; the tool uses the appropriate statistical or 
engineering macro functions and then displays the results in an output table. Some tools 
generate charts in addition to output tables. 
 
Accessing the Data Analysis Tools: To access various tools included in the Analysis 
ToolPak click on “Data” menu, then click “Data Analysis” and select the appropriate analysis 
option. If the “Data Analysis” command is not available, we need to load the Analysis 
ToolPak “select and run the “Analysis ToolPack” from the “Add-Ins”.  
 

mk:@MSITStore:C:%5CProgram%20Files%5CMicrosoft%20Office%5COffice10%5C1033%5Cxlmain10.chm::/html/xldccCreateFormulaToCalculateValue.htm##
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Correlation 
The “Correlation” analysis tool measures the relationship between two data sets that are 
scaled to be independent of the unit of measurement. It can be used to determine whether two 
ranges of data move together — that is, whether large values of one set are associated with 
large values of the other (positive correlation), whether small values of one set are associated 
with large values of the other (negative correlation), or whether values in both sets are 
unrelated (correlation near zero).  
 
If the experimenter had measured two variables in a group of individuals, such as foot-length 
and height, he/she can calculate how closely the variables are correlated with each other. 
Select “Data”, “Data Analysis”. Scroll down the list, select “Correlation” and click OK. A 
new window will appear where the following information needs to be entered:  
 
Input range. Highlight the two columns of data that are the paired values for the two 
variables. The cell range will automatically appear in the box. If column headings are 
included in this range, tick the Labels box.  
 
Output range. Click in this box then select a region on the worksheet where the user want the 
data table displayed. It can be done by clicking on a single cell, which will become the top 
left cell of the table.  
Click OK and a table will be displayed showing the correlation coefficient (r) for the data. 
CORREL(array1, array2) also returns the correlation coefficient between two data sets. 

 
Covariance 
Covariance is a measure of the relationship between two ranges of data. The “covariance” 
tool can be used to determine whether two ranges of data move together,  i.e., whether large 
values of one set are associated with large values of the other (positive covariance), whether 
small values of one set are associated with large values of the other (negative covariance), or 
whether values in both sets are unrelated (covariance near zero). 
To return the covariance for individual data point pairs, use the COVAR worksheet function. 

 
Regression 
The “Regression” analysis tool performs linear regression analysis by using the "least 
squares" method to fit a line through a set of observations. You can analyze how a single 
dependent variable is affected by the values of one or more independent variables. For 
example, one can analyze how grain yield of barley is affected by factors like ears per plant, 
ear length (in cms), 100 grain weight (in gms) and number of grains per ear.  
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Descriptive Statistics 
The “Descriptive Statistics” analysis tool generates a report of univariate statistics for data in 
the input range, which includes information about the central tendency and variability of the 
entered data. 
 

Sampling 
The “Sampling” analysis tool creates a sample from a population by treating the input range 
as a population. When the population is too large to process or chart, a representative sample 
can be used. One can also create a sample that contains only values from a particular part of a 
cycle if you believe that the input data is periodic. For example, if the input range contains 
quarterly sales figures, sampling with a periodic rate of four places values from the same 
quarter in the output range. 
 

Random Number Generation 
The “Random Number Generation” analysis tool fills a range with independent random 
numbers drawn from one of several distributions. We can characterize subjects in a 
population with a probability distribution. For example, you might use a normal distribution 
to characterize the population of individuals' heights. 
 

ANOVA: Single Factor 
“ANOVA: Single Factor” option can be used for analysis of one-way classified data or data 
obtained from a completely randomized design. In this option, the data is given either in rows 
or columns such that observations in a row or column belong to one treatment only. 
Accordingly, define the input data range. Then specify whether, treatments are in rows or 
columns. Give the identification of upper most left corner cell in output range and click OK. 
In output, we get replication number of treatments, treatment totals, treatment means and 
treatment variances. In the ANOVA table besides usual sum of squares, Mean Square, F-
calculated and P-value, it also gives the F-value at the pre-defined level of significance. 

 
ANOVA: Two Factors with Replication 
This option can be used for analysis of two-way classified data with m-observations per cell 
or for analysis of data obtained from a factorial CRD with two factors with same or different 
levels with same replications.  
 

ANOVA: Two Factors without Replication 
This option can be utilized for the analysis of two-way classified data with single observation 
per cell or the data obtained from a randomized complete block design. Suppose that there 
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are ‘v’ treatments and ‘r’ replications and then prepare a v × r data sheet. Define it in input 
range, define alpha and output range. 
 
t-Test: Two-Sample Assuming Equal Variances:  
This analysis tool performs a two-sample student's t-test. This t-test form assumes that the 
means of both data sets are equal; it is referred to as a homoscedastic t-test. You can use t-
tests to determine whether two sample means are equal. TTEST(array1,array2,tails,type) 
returns the probability associated with a student’s t test. 
 

t-Test: Two-Sample Assuming Unequal Variances:  
This t-test form assumes that the variances of both ranges of data are unequal; it is referred to 
as a heteroscedastic t-test. Use this test when the groups under study are distinct.  
 

t-Test: Paired Two Sample For Means:  
This analysis tool performs a paired two-sample student's t-test to determine whether a 
sample's means are distinct. This t-test form does not assume that the variances of both 
populations are equal. One can use this test when there is a natural pairing of observations in 
the samples, like a sample group is tested twice - before and after an experiment. 

 
F-Test Two-Sample for Variances 
The F-Test Two-Sample for Variances analysis tool performs a two-sample F-test to compare 
two population variances. For example, you can use an F-test to determine whether the time 
scores in a swimming meet have a difference in variance for samples from two teams. 
FTEST(array1, array2) returns the result of an F-test, the one tailed probability that the 
variances of Array1 and array 2 are not significantly different. 
 

Transformation of Data  
The validity of analysis of variance depends on certain important assumptions like normality 
of errors and random effects, independence of errors, homoscedasticity of errors and effects 
are additive. The analysis is likely to lead to faulty conclusions when some of these 
assumptions are violated. A very common case of violation is the assumption regarding the 
constancy of variance of errors. One of the alternatives in such cases is to go for a weighted 
analysis of variance wherein each observation is weighted by the inverse of its variance. For 
this, an estimate of the variance of each observation is to be obtained which may not be 
feasible always. Quite often, the data are subjected to certain scale transformations such that 
in the transformed scale, the constant variance assumption is realized. Some of such 
transformations can also correct for departures of observations from normality because 
unequal variance is many times related to the distribution of the variable also. Major aims of 
applying transformations are to bring data closer to normal distribution, to reduce 
relationship between mean and variance, to reduce the influence of outliers, to improve 
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linearity in regression, to reduce interaction effects, to reduce skewness and kurtosis. Certain 
methods are available for identifying the transformation needed for any particular data set but 
one may also resort to certain standard forms of transformations depending on the nature of 
the data. Most commonly used transformations in the analysis of experimental data are 
Arcsine, Logarithmic and Square root. These transformations of data can be carried out using 
the following options. 
 
Arcsine (ASIN): In the case of proportions, derived from frequency data, the observed 
proportion p can be changed to a new form θ = sin-1(√p). This type of transformation is 
known as angular or arcsine transformation. However, when nearly all values in the data lie 
between 0.3 and 0.7, there is no need for such transformation. It may be noted that the 
angular transformation is not applicable to proportion or percentage data which are not 
derived from counts. For example, percentage of marks, percentage of profit, percentage of 
protein in grains, oil content in seeds, etc., can not be subjected to angular transformation. 
The angular transformation is not good when the data contain 0 or 1 values for p. The 
transformation in such cases is improved by replacing 0 with (1/4n) and 1 with [1-(1/4n)], 
before taking angular values, where n is the number of observations based on which p is 
estimated for each group.  
ASIN gives the arcsine of a number. The arcsine is the angle whose sine is number and this 
number must be from -1 to 1. The returned angle is given in radians in the range 2/π−  to 

2/π . To express the arcsine in degrees, multiply the result by 180/ π . For this go to the 
CELL where the transformation is required and write =ASIN (Give Cell identification for 
which transformation to be done)* 180*7/22 and press ENTER. Then copy it for all 
observations. 

Example: ASIN (0.5) equals 0.5236 (π /6 radians) and ASIN (0.5)* 180/PI equals 30 
(degrees). 
 
Logarithmic (LN): When the data are in whole numbers representing counts with a wide 
range, the variances of observations within each group are usually proportional to the squares 
of the group means. For data of this nature, logarithmic transformation is recommended. It 
squeezes the bigger values and stretches smaller values. A simple plot of group means 
against the group standard deviation will show linearity in such cases. A good example is 
data from an experiment involving various types of insecticides. For the effective insecticide, 
insect counts on the treated experimental unit may be small while for the ineffective ones, the 
counts may range from 100 to several thousands. When zeros are present in the data, it is 
advisable to add 1 to each observation before making the transformation. The log 
transformation is particularly effective in normalizing positively skewed distributions. It is 
also used to achieve additivity of effects in certain cases. 
LN gives the natural logarithm of a positive number.  Natural logarithms are based on the 
constant e (2.718281828845904). For this go the CELL where the transformation is required 
and write = LN(Give Cell Number for which transformation to be done) and press ENTER. 
Then copy it for all observations. 
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Example: LN(86) equals 4.454347, LN(2.7182818) equals 1, LN(EXP(3)) Equals 3 and 
EXP(LN(4)) equals 4. Further, EXP returns e raised to the power of a given number, LOG 
returns the logarithm of a number to a specified base and LOG 10 returns the base-10 
logarithm of a number. 

 
Square Root (SQRT): If the original observations are brought to square root scale by taking 
the square root of each observation, it is known as square root transformation. This is 
appropriate when the variance is proportional to the mean as discernible from a graph of 
group variances against group means. Linear relationship between mean and variance is 
commonly observed when the data are in the form of small whole numbers (e.g., counts of 
wildlings per quadrat, weeds per plot, earthworms per square metre of soil, insects caught in 
traps, etc.). When the observed values fall within the range of 1 to 10 and especially when 
zeros are present, the transformation should be, √(y + 0.5).  
SQRT gives square root of a positive number. For this go to the CELL where the 
transformation is required and write = SQRT (Give Cell No. for which transformation to be 
done = 0.5) and press ENTER. Then copy it for all observations. However, if number is 
negative, SQRT return the #NUM ! error value. 

Example: SQRT(16) equals 4, SQRT(-16) equals #NUM! and SQRT(ABS(-16)) equals 4. 
Once the transformation has been made, the analysis is carried out with the transformed data 
and all the conclusions are drawn in the transformed scale. However, while presenting the 
results, the means and their standard errors are transformed back into original units. While 
transforming back into the original units, certain corrections have to be made for the means. 
In the case of log transformed data, if the mean value is y , the mean value of the original 
units will be antilog ( y + 1.15 y ) instead of antilog ( y ). If the square root transformation had 
been used, then the mean in the original scale would be antilog (( y + V( y ))2 instead of ( y )2 
where V( y ) represents the variance of y . No such correction is generally made in the case 
of angular transformation. The inverse transformation for angular transformation would be p 
= (sin q)2. 

 
Sum(SUM): It gives the sum of all the numbers in the list of arguments.  For this go to the 
CELL where the sum of observations is required and write = SUM (define data range for 
which the sum is required) and press ENTER. Instead of defining the data range, the exact 
numerical values to be added can also be given in the argument viz. SUM (Number1, 
number2,…), number1, number2,… are 1 to 30 arguments for which you want the sum. 
Example: If cells A2:E2 contain 5, 15,30,40 and 50; SUM(A2:C2) equals 50, 
SUM(B2:E2,15) equals 150 and SUM(5,15) equals 20. 
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Some other related functions with this option are: 
 
AVERAGE returns the average of its arguments, PRODUCT multiplies its arguments and 
SUMPRODUCT returns the sum of the products of corresponding array components. 
     
Sum of Squares (SUMSQ): This gives the sum of the squares of the list of arguments. For 
this go to the CELL where the sum of squares of observations is required and write = 
SUMSQ (define data range for which the sum of squares is required) and press ENTER.  
Example: If cells A2:E2 contain 5, 15, 30, 40 and 50; SUMSQ(A2:C2) equals 1150 and 
SUMSQ(3,4) equals 25. 

 
Matrix Multiplication (MMULT): It gives the matrix product of two arrays, say array 1 
and array 2. The result is an array with the same number of rows as array1, say a and the 
same number of columns as array2, say b. For getting this mark the a × b cells on the spread 
sheet. Write =MMULT (array 1, array 2) and press Control +Shift+ Enter. The number of 
columns in array1 must be the same as the number of rows in array2, and both arrays must 
contain only numbers. Array1 and array2 can be given as cell ranges, array constants, or 
references. If any cells are empty or contain text, or if the number of columns in array1 is 
different from the number of rows in array2, MMULT returns the ≠VALUE! error value. 
 
Determinant of a Matrix (MDETERM): It gives the value of the determinant associated 
with the matrix. Write = MDETERM(array) and press Control + Shift + Enter. 
 
Matrix Inverse (MINVERSE): It gives the inverse matrix for the non-singular matrix stored 
in a square array, say of order p. i.e., an array with equal number of rows and columns. For 
getting this mark the p × p cells on the spread sheet where the inverse of the array is required 
and write = MINVERSE(array) and press Control + Shift + Enter. Array can be given as a 
cell range, such as A1:C3; as an array constant, such as {1,2,3;4,5,6;7,8,8}; or as a name for 
either of these. If any cells in array are empty or contain text, MINVERSE returns the 
≠VALUE! error value.  
Example: MINVERSE ({4,-1;2,0}) equals {0,0.5;-1,2}and MINVERSE ({1,2,1;3,4,-
1;0,2,0}) equals {0.25, 0.25,-0.75;0,0,0.5;0.75,-0.25,-0.25}. 
 
Transpose (TRANSPOSE): For getting the transpose of an array mark the array and then 
select copy from the EDIT menu.  Go to the left corner of the array where the transpose is 
required.  Select the EDIT menu and then paste special and under paste special select the 
TRANSPOSE option.  
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EXERCISES ON MS-EXCEL 
1. Table below contains values of pH and organic carbon content observed in soil 

samples collected from natural forest. Compute mean, median, standard deviation, 
range and skewness of the data.  

2.  

Soil 
pit 

pH 
(x) 

Organic 
carbon (%) 

(y) 

 Soil pit pH 
(x) 

Organic 
carbon (%) 

(y) 
1 5.7 2.10  9 5.4 2.09 
2 6.1 2.17  10 5.9 1.01 
3 5.2 1.97  11 5.3 0.89 
4 5.7 1.39  12 5.4 1.60 
5 5.6 2.26  13 5.1 0.90 
6 5.1 1.29  14 5.1 1.01 
7 5.8 1.17  15 5.2 1.21 
8 5.5 1.14     

 
3. Consider the following data on various characteristics of a crop: 

pp ph ngl yield 
142 0.525 8.2 2.47 
143 0.64 9.5 4.76 
107 0.66 9.3 3.31 
78 0.66 7.5 1.97 
100 0.46 5.9 1.34 
86.5 0.345 6.4 1.14 
103.5 0.86 6.4 1.5 
155.99 0.33 7.5 2.03 
80.88 0.285 8.4 2.54 
109.77 0.59 10.6 4.9 
61.77 0.265 8.3 2.91 
79.11 0.66 11.6 2.76 
155.99 0.42 8.1 0.59 
61.81 0.34 9.4 0.84 
74.5 0.63 8.4 3.87 
97 0.705 7.2 4.47 
93.14 0.68 6.4 3.31 
37.43 0.665 8.4 1.57 
36.44 0.275 7.4 0.53 
51 0.28 7.4 1.15 
104 0.28 9.8 1.08 
49 0.49 4.8 1.83 
54.66 0.385 5.5 0.76 
55.55 0.265 5 0.43 
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88.44 0.98 5 4.08 
99.55 0.645 9.6 2.83 
63.99 0.635 5.6 2.57 
101.77 0.29 8.2 7.42 
138.66 0.72 9.9 2.62 
90.22 0.63 8.4 2 

(i) Sort yield in ascending order and filter the data ph less than 0.3 or greater than 0.6 
from the data. 

(ii) Find the correlation coefficient and fit the multiple regression equation by taking 
yield as dependent variable. 

 

4.  Let A, B and C be three matrices as follows: 

A















=

31113
51938
27653
91642

B 



















=

18
91
42
75
31

   C



















=

55821
16632
75532
88763
48132

. 

  Find (i) AB (ii) C-1  (iii) A   (iv) AT. 
 

5. Draw line graph for the following data on a tree species: 

Year Height (cm) Diameter 
1981 21   5.0 
1982 34   8.0 
1983 11   9.0 
1984 13   3.0 
1985 15   2.4 
1986 55   5.5 
1987 30   6.9 
1988 50   9.1 
1989 23 10.0 
1990 22   2.5 
1991 37   3.4 
1992 38   6.2 
1993 37   7.0 
1994 11   8.1 
1995 20   9.0 
1996 16   3.7 
1997 54   9.0 
1998 33   4.0 
1999 12   6.7 
2000 19   7.7 

Also draw a bar diagram using the above data. 
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6. The table below lists plant height in cm of seedlings of rice belonging to the two 
varieties. Examine whether the two samples are coming from populations having 
equal variance, using F-test. Further, test whether the average height of the two 
groups are the same, using appropriate t-test.  
 

Plot Group 
I 

Group II 

1 23.0 8.5 
2 17.4 9.6 
3 17.0 7.7 
4 20.5 10.1 
5 22.7 9.7 
6 24.0 13.2 
7 22.5 10.3 
8 22.7 9.1 
9 19.4 10.5 
10 18.8 7.4 

7. Examine whether the average organic carbon content measured from two layers of a 
set of soil pits from a pasture are same using paired t-test from the data given below: 

 Organic carbon (%) 
Soil 
pit 

Layer 1 
(x) 

Layer 2 
(y) 

1 1.59 1.21 
2 1.39 0.92 
3 1.64 1.31 
4 1.17 1.52 
5 1.27 1.62 
6 1.58 0.91 
7 1.64 1.23 
8 1.53 1.21 
9 1.21 1.58 
10 1.48 1.18 

8. Mycelial growth in terms of diameter of the colony (mm) of R. solani isolates on 
PDA medium after 14 hours of incubation is given in the table below. Carry out the 
CRD analysis for the data. And draw your inferences.  

R. solani isolates Mycelial growth 
  Repl. 1 Repl. 2 Repl. 3 
RS 1 29.0 28.0 29.0 
RS 2 33.5 31.5 29.0 
RS 3 26.5 30.0   
RS 4 48.5 46.5 49.0 
RS 5 34.5 31.0   
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9. Following is the data on mean yield in kg per plot of an experiment conducted to 
compare the performance of 8 treatments using a Randomized Complete Block 
design with 3 replications. Perform the analysis of variance. 

 

Treatment  
(Provenance) 

Replication 

  I II III 
1 30.85 38.01 35.10 
2 30.24 28.43 35.93 
3 30.94 31.64 34.95 
4 29.89 29.12 36.75 
5 21.52 24.07 20.76 
6 25.38 32.14 32.19 
7 22.89 19.66 26.92 
8 29.44 24.95 37.99 

10. From the following data make a summary table for finding out the average of X9 for 
various years and various levels of X6 using pivot table and pivot chart report option 
of MS-Excel. 
 

YR X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 
1995 1 1 40 30 0 60 40 4861 5208 5556 5694 
1995 1 2 40 30 0 60 40 4167 4444 4861 5035 
1995 2 3 40 30 0 60 40 4618 4653 4653 5174 
1995 2 4 40 30 0 60 40 4028 4167 4514 4722 
1995 2 5 40 30 0 60 40 4306 4514 4653 4861 
1996 2 1 40 30 0 60 40 6000 5750 5499 6250 
1996 2 2 40 30 0 60 40 5646 5000 5250 5444 
1996 2 3 40 30 0 60 40 4799 5097 4896 5299 
1996 2 4 40 30 0 60 40 5250 5299 4194 4847 
1996 3 1 40 30 0 60 40 5139 5417 5764 5903 
1996 3 2 40 30 0 60 40 5417 5694 6007 6111 
1996 4 1 40 30 0 60 40 6300 7450 7750 8000 
1996 4 2 40 30 0 60 40 6350 7850 7988 8200 
1996 4 3 40 30 0 60 40 5750 6400 6600 6700 
1996 4 4 40 30 0 60 40 6000 7250 7450 7681 
1996 5 1 40 30 0 60 40 3396 4090 5056 5403 
1996 5 2 40 30 0 60 40 5194 5000 6000 6500 
1996 5 3 40 30 0 60 40 4299 4250 4750 5250 
1996 6 1 40 30 0 60 40 4944 5194 5000 5097 
1996 6 2 40 30 0 60 40 5395 5499 5499 5597 
1996 6 3 40 30 0 60 40 3444 5646 5000 5000 
1996 6 4 40 30 0 60 40 6250 6500 6646 6750 
1997 1 1 120 30 30 120 60 5839 6248 6199 6335 
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1997 1 2 120 30 30 120 60 5590 5652 5702 5851 
1997 2 1 120 30 30 120 60 4497 4794 4894 5205 
1997 2 2 120 30 30 120 60 4696 5006 5304 5702 
1997 2 3 120 30 30 120 60 4398 4596 4894 5304 
1997 2 4 120 30 30 120 60 4497 5503 5702 6099 
1997 3 1 120 30 30 120 60 4199 5602 5801 6000 
1997 3 2 120 30 30 120 60 3404 3901 4199 4497 
1997 3 3 120 30 30 120 60 3602 5404 5503 5801 
1997 3 4 120 30 30 120 60 3602 4297 4497 4696 
1997 4 1 120 30 30 120 60 3205 3801 4199 4894 
1997 4 2 120 30 30 120 60 3801 4794 6099 6298 
1997 4 3 120 30 30 120 60 3503 5205 6298 6795 
1997 4 4 120 30 30 120 60 3205 4894 5503 6199 
1997 5 1 120 30 30 120 60 4199 4099 4199 4297 
1997 5 2 120 30 30 120 60 3304 3702 3602 3801 
1997 5 3 120 30 30 120 60 2596 2894 3106 3205 
1998 1 1 40 30 0 60 40 3727 3106 3404 3503 
1998 1 2 40 30 0 60 40 4894 4348 4447 4534 
1998 1 3 40 30 0 60 40 2696 2795 3056 3205 
1998 2 2 40 30 0 60 40 5503 4298 4497 4795 
1998 2 3 40 30 0 60 40 5006 3702 3702 3901 

 
11. From the data given in problem 10, sort X10 in ascending order. Also, filter the data 

for X11 < 4200 or X11 > 5000. 
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1. Introduction 
Sample surveys are a cost-effective method for data collection, allowing for accurate 
and reliable inferences about population parameters. These surveys involve selecting 
a representative subset of the population, from which conclusions about the entire 
target population can be drawn. Analyzing survey data is crucial for extracting 
meaningful insights from collected responses. Microsoft Excel offers a range of 
powerful tools for cleaning, organizing, and analyzing survey data efficiently. Key 
advantages of using Excel for survey analysis include: 
• Easy data entry and organization 
• Built-in statistical and analytical functions 
• Visual representation through charts and graphs 
• PivotTables for summarizing large datasets 

 
2. Importing and Organizing Survey Data  

• Importing Data  
- If survey data is in CSV or Excel format, open the file in Excel 
- If using Google Forms, download responses as a CSV file and open it in Excel 

  
• Cleaning Data  

- Remove blank rows/columns   
- Ensure uniform responses (e.g., “Yes” vs. “yes”) 
- Remove duplicates. Use Data > Remove Duplicates   
- Handle missing data 

 
• Formatting Data for Analysis   

- Convert responses into numerical values where necessary (e.g., Yes = 1, No = 
0)  

- Use Data Validation for consistency in data entry  
 

3. Exploratory Data Analysis (EDA) of Survey Data  
Basic statistical summaries help understand the central tendency and dispersion of 
survey data. Excel functions to compute these include: 
 

3.1 Basic Statistical Functions:  
• Count: =COUNT(cell range) for numerical data and =COUNTA(range) for 

categorical data 
• Minimum and Maximum: =MIN(cell range), =MAX(cell range) 
• Mean (Average): =AVERAGE(cell range) 
• Median: =MEDIAN(cell range) 
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• Mode: =MODE(cell range) 
• Standard Deviation: =STDEV.P(range) or =STDEV.S(cell range) 
• Variance: =VAR.P(cell range) or =VAR.S(cell range) 

 
3.2 Data Visualization: Visualizing survey data helps identify trends and 

relationships. Some key chart types in Excel include: 
• Bar Charts: Useful for categorical data comparisons (Insert > Bar Chart) 
• Histograms: Shows frequency distributions (Insert > Histogram) 
• Pie Charts: Displays proportions (Insert > Pie Chart) 
• Box Plots: Highlights outliers and spread (Insert > Box and Whisker) 
• Scatter Plots: Shows relationships between numerical variables (Insert > 

Scatter Plot) 
• Pivot Charts: Dynamic visual representation of aggregated data (Insert > 

PivotChart) 
Pivot Tables for Survey Data Exploration: Pivot tables are one of the most 
powerful tools in MS Excel for summarizing and analyzing survey data. Steps to 
create a pivot table includes: 

• Select the dataset and go to Insert > PivotTable. 

• Choose whether to place the PivotTable in a new or existing worksheet. 

• Drag fields into the Rows, Columns, Values, and Filters sections. 

• Use Value Field Settings to apply functions like Count, Sum, Average, etc. 

• Apply filters and sorting for deeper insights. 
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3.3 Identifying Trends and Patterns 
• Use Conditional Formatting (Home > Conditional Formatting) to highlight 

trends. 
• Apply Filters and Sorting to isolate specific groups. 
• Utilize Moving Averages (=AVERAGE(cell range)) for trend analysis. 
• Analyze Correlations using =CORREL(cell range1, cell range2) to measure 

relationships between numerical survey responses. 

 
3.4 Detecting Outliers: Outliers can distort results and should be detected and handled 

appropriately. 
• Use Box Plots to visually identify outliers. 
• Apply the Interquartile Range (IQR) method: 

o Find Q1 (=QUARTILE.INC(range,1)) and Q3 
(=QUARTILE.INC(range,3)). 

o Compute IQR: =Q3 - Q1. 
o Identify outliers as values below Q1 - 1.5*IQR or above Q3 + 1.5*IQR. 

• Highlight outliers using Conditional Formatting. 

 
3.5 Descriptive Statistics Using Data Analysis ToolPak: The Data Analysis ToolPak is 

an Excel add-in that provides a collection of analysis tools, including statistical, 
financial analysis, etc. This add-in simplifies tasks that would otherwise require 
complex formulas or external tools. It's especially useful for analysts, researchers, and 
students who need to conduct quick data processing, hypothesis testing, and advanced 
statistical analysis. Go to File > Options > Add-ins > Analysis ToolPak > Enable   
Overview of the Data Analysis Tools: The ToolPak includes a variety of tools for: 

o Descriptive Statistics: Measures of central tendency, dispersion, and 
distribution. 

o Regression Analysis: Linear regression, multiple regression, and other 
statistical models. 
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o ANOVA: One-way and two-way analysis of variance. 
o Correlation: Calculating the correlation coefficient between two 

variables. 
o t-Test: Paired and two-sample tests for hypothesis testing. 
o Histograms: Creating and analyzing frequency distributions. 
o F-Test: Testing equality of variances between two datasets. 
o Moving Averages: Smoothing out data to identify trends. 
o Sampling: Creating random samples and conducting analysis on them. 

 
 
4. Sampling Schemes: Sampling is the process of selecting a subset of individuals from 

a population to estimate characteristics of the entire population. Sampling schemes 
can be broadly categorized into two types, such as: Probability sampling (Simple 
Random Sampling, Systematic Sampling, Stratified Sampling, Cluster Sampling, 
Multi Stage Sampling etc.) and Non Probability Sampling (Quota Sampling, 
Judgement Sampling, Snow Ball Sampling etc.)   
4.1 Simple Random Sampling (SRS): In Simple Random Sampling (SRS), each 
element of the population has an equal chance of being selected. Steps involved to 
select simple random sample in MS Excel:  

• Create a list of items (or population). For example, assume a population of 100 
people, numbered from 1 to 100 in column A. 

• In the next column (Column B), generate random numbers using function 
=RANDBETWEEN() function, which generates a random number between given 
range. 
- Formula: =RANDBETWEEN() 
- Drag down the formula to select the units in the sample.  

4.2 Systematic Sampling: In Systematic Sampling, first unit is selected with the help 
of random numbers, and the remaining units are selected automatically according to a 
predetermined pattern. The systematic sampling technique is operationally more 
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convenient than simple random sampling. It also ensures, at the same time that each 
unit has an equal probability of inclusion in the sample. Suppose there are N units in a 
population, which are numbered from 1 to N. Let N = nk, (n = sample size and k = an 
integer), 𝑘𝑘=𝑁𝑁/𝑛𝑛 and if a random number less than or equal to k is selected and every 
kth unit thereafter. The resulting samples are called kth systematic sampling and such 
a process is called Linear Systematic sampling. Steps involved to select systematic 
sample in MS Excel: 

• Prepare the data Like in SRS, create a population list (1 to 100) 
• Choose the Sampling Interval (k):  

Decide the sample size (for example, 10) and the population size (100). The 
sampling interval k is calculated as: N/n = 100/ 10 = 10. So, the interval is every 
10th person. 

• Select the First Element Randomly: Use the =RANDBETWEEN() function to 
select a random starting point between 1 and k, for example, if the random number 
between 1 and 10 is 3, then the starting point is the 3rd person. 

• Select Every kth Person: From the randomly chosen starting point, select every 
10th person in the list. If the random starting point is 4, select the 4th, 14th, 24th, 
and so on. 

4.3 Stratified Sampling 
In stratified random sampling, population is divided into non-overlapping groups 
based on specific characteristics, such as age, gender, income level, or education. 
Each group is called a stratum. After dividing the population into homogeneous strata, 
a random sample is taken from each stratum. The sample size taken from each group 
can be proportional to the stratum size or equal across all strata, depending on the 
objective. Then, these samples are used to give conclusion about the whole target 
population. By ensuring that each subgroup is represented, stratified random sampling 
helps reduce sampling error and increases the precision of the overall estimate. Steps 
involved to select stratified random sample in MS Excel: 

• Prepare the data: Create a list of individuals and assign them to different 
homogeneous strata.  

• Sample within Each Stratum: For each subgroup, randomly select a subset of 
individuals. The allocation of sample size within each stratum can be done using 
different methods depending on the research objectives and the relative 
importance of each stratum. The common methods for allocating the sample size 
across strata are equal allocation, proportional allocation, optimum allocation. 

• Combine the analysis to get final results.  
4.4 Cluster Sampling: In Cluster Sampling, the population is divided into clusters 
(groups), and entire clusters are randomly selected for inclusion in the sample. Steps 
involved to select cluster in MS Excel: 

• Prepare the data: Divide the population into clusters. For example, group 
individuals by location or department. 

• Select Clusters Randomly: Use a random number generator to select a certain 
number of clusters. 

• Include All Members of the Selected Clusters: Once clusters are selected, include 
all individuals within those clusters in the final sample. If there are 10 clusters, 
randomly select 2 clusters and include all individuals in those clusters. 
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5. Conclusion 
This chapter explored how to implement various sampling schemes in MS Excel, 
including Simple Random Sampling, Systematic Sampling, Stratified Sampling, and 
Cluster Sampling. Excel's built-in functions, such as =RAND(), sorting tools, and basic 
arithmetic operations, make it an excellent tool for performing sampling in both 
straightforward and more complex scenarios. The flexibility of Excel allows users to 
efficiently manage and analyze data, providing a practical solution for a wide range of 
sampling techniques. 
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1. Introduction  

R is a free software environment for statistical computing and graphics. It is almost 
perfectly compatible with S-plus. The only thing you need to do is download the software 
from the internet and use an editor to write your program (e.g. Notepad). It contains most 
standard methods of statistics as well as lot of less commonly used methods and can be 
used for programming and to construct your own functions. It is very much a vehicle for 
newly developing methods of interactive data analysis. It has developed rapidly, and has 
been extended by a large collection of packages. It is available for down load from 
http://www.r-project.org/. The primary purpose of this lecture is to introduce R.  

 

2. To Download R Software  

 In any web browser (e.g. Microsoft Internet Explorer), go to: http://www.r-
project.org 

 

 Downloads: CRAN 

 

 

 Set your Mirror: Anyone in the India or any other country is fine. 
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• On your right hand side you will see Download R for Windows. Click there 

• Click on base 

 
• Click on R-3.0.2.exe (52 megabytes, 32/64 bit) and save it to your hard disc. 

 
• This is the latest available version of the software. It is an ‘.exe’ file, which you 

can save in your hard disc. By double clicking on the name of this file, R is 
automatically installed. All you need to do is follow the installation process. 
 

3. To Open R Software 
The installation process automatically creates a shortcut for R. Double click this icon to 
open the R environment. R will open up with the appearance of a standard Windows 
implementation (i.e. various windows and pull-down menus). Note that R is an 
interpreted language and processes commands on a line by line basis. Consequently it is 
necessary to hit ENTER after typing in (or pasting) a line of R code in order to get R to 
implement it. 
 

http://r.mirror.mendoza-conicet.gob.ar/bin/windows/
http://lib.stat.cmu.edu/R/CRAN/bin/windows/base
http://lib.stat.cmu.edu/R/CRAN/bin/windows/base/R-2.4.1-win32.exe
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4. To Run R Program Code 
The main active window within the R environment is the R Console. This is a line editor 
and output viewer combined into one window. Here at the command prompt (the symbol 
> ), we can enter R commands which run instantly upon pressing the carriage return key. 
This sign (>) is called prompt, since it prompts the user to write something, see below. 

 
We can also run blocks of code which we have copied into the paste buffer from another 
source. In this session we shall use the Windows-supplied editor Notepad to display and 
edit our R program code. If we were to write some R of code, then simply copy it from 
the editor and paste it into the R Console, then the code would run in real time.  

To Open The Editor 
Here we are using the Windows-supplied editor Notepad to display and edit our R 
program code, although any general-purpose editor will suffice. Open Notepad by going 
to the Start button and clicking on: 

Start > All Programs > Accessories > Notepad 
Having opened Notepad, open the file, for example, Intro_to_R.txt (containing the 
program code, assume that it is copied in C: / derive) by selecting the following option 
from the pull-down menu: 

File > Open 
Click on the down-arrow at the top of the “Open” dialog box and change the selection to 
“Look in” C:\. You should now see the filename Intro_to_R.txt among a list of files. 
Double-click on the filename to open it. 

A Couple Of Other Useful Things 

• Please remember that R is case-sensitive so we need to be consistent in our use of 
lower and upper case letters, both for commands and for objects. 

• When the program has finished, we should see the red command prompt ( > ) pop 
up in the R Console window. This indicates that control is returned to the user, so 
that you can now type more R commands if you wish. 

• A comment in R code begins with a hash symbol (#). Whole lines may be 
commented or just the tail-end of a line. Examples are: 

Help 
Html-help can be invoked from the Help-menu. From the opening webpage, you can 
access manuals, frequently asked questions, references to help for individual packages, 
and most importantly, Search Engine. Help is the best place to find out new functions, 
and get descriptions on how to use them. 
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Getting Started With R 
Commands in R are given at the command prompt.  

Simple calculations, vectors and graphics 
To begin with, we’ll use R as a calculator. Try the following commands: 

> 2+7 
> 2/(3+5) 
> sqrt(9)+5^2 
> sin(pi/2)-log(exp(1)) 

Help about a specific command can be had by writing a question mark before the 
command, for instance: 

> ?log 
As an alternative, help can be used; in this case, help (log). The help files are a great 
resource and you will soon find yourself using them frequently. 
Comments can be written using the #-symbol as follows: 

> 2+3    # The answer should be 5 

Vectors and matrices 
Vectors and matrices are of great importance in many numerical problems. To create a 
vector named mydata and assign the values 7, −2, 5 to it, we write as follows: 

> mydata <-  c(7,-2,5) 
The symbol  <-  (or alternatively use =) should be read as “assigns”. The command c can 
be interpreted (by you, the user) as column or combine. The second element of the vector 
can be referred to by the command 

> mydata[2] 
and elements between 2 and 3 (i.e. elements 2 and 3) by 

> mydata[2:3] 
Vectors can be manipulated, for instance by adding a constant to all elements, as follows. 

> myconst <- 100;  mydata + myconst 
Using the semicolon allows us to write multiple commands on a single line  
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A vector x consisting of the integers between 1 and 10; 1, 2, . . . , 10; can be created by 
writing 

> x <- c(1:10) 
Vectors with sequences of numbers with particular increments can be created with the seq 
command: 

> mydata1 <- seq(0,10,2) # integers between 0 and 10, with increment 2 

Read x and y 
x<- c(2,3,1,5,4,6,5,7,6,8)  
y<- c(10, 12, 14, 13, 34, 23, 12, 34, 25, 43) 

Read two vectors 
weight<- c(60, 72, 57,90) 
height<-c(1.75, 1.80, 1.65, 1.90) 
bmi<- weight/height^2     # Compute body mass index (BMI) 

Functions on vectors 
length(x)            #To compute length of data in x. 
[1] 10 
sum(x)   #To compute sum of data in x. 
[1] 47 
sum(x^2) 
[1] 265 
mean(x)  #To compute mean of data in x. 
[1] 4.7 
mean(y) 
[1] 22 
var(x)    #To compute variance of x. 
[1] 4.9 
sqrt(var(x))   # To compute standard deviation of x. 
[1] 2.213594 
sum((x-mean(x))^2) 
[1] 44.1 
sqrt(var(x))/mean(x)*100  #To compute coefficient of variation 

To compute summary features of data in x  
summary(x)       
Min.  1st Qu.  Median  Mean  3rd Qu.  Max. 
1.00  3.25   5.00   4.70  6.00   8.00 
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To compute summary features of data in x2  
summary(x^2) 
Min.  1st Qu.  Median  Mean   3rd Qu.  Max. 
1.00  10.75   25.00   26.50   36.00   64.00 

Some calculations 
sum(weight) 
mean(weight)  or sum(weight)/ length(weight) 
Denote by  xbar= mean(weight)  then  
sqrt(sum((weight- xbar)^2))/ length(weight)) 
sd(weight) 
cor(x,y)  #To compute correlation coefficient between x and y. 
var(x,y)  #To compute covariance between x and y. 

Slightly more complicated example … 
The rule of thumb is that the BMI for a normal weight individual should be between 20 
and 25, and we want to know if our data deviate systematically from that.  

• We can use a one sample t test to assess whether the 6 persons’ BMI can be 
assumed to have mean 22.5 given that they come from a normal distribution. 

• We can use function t.test  

• Although you might not be knowing about t test but example is just to give some 
indication of what real statistical output look like 

t test  (see ? t.test) 
t.test (bmi, mu=22.5) 

One Sample t-test 
data:  bmi  
t = -0.5093,   df = 3,   p-value = 0.6456 
alternative hypothesis: true mean is not equal to 22.5  
95 percent confidence interval: 

18.29842   25.54231  
sample estimates: 
mean of x  
21.92036  

If mu is not given then t.test would use default mu=0 
The p value is not small, indicating that it is not at all unlikely to get  data like those 
observed if the mean were in fact 22.5 

Classical Tests 
To load the library of classical tests statistics available with R software use 
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library(stats)    
#To get results of t-test for comparing population means of x and y when variances are 
not equal. 

t.test(x,y)   
# To get results for usual t-test when variances are equal. If T is replaced by F then it is 
equal to t.test(x, y) 

t.test(x,y,var.equal=T)  
?t.test  
library(stats) 
x<- c(2,3,1,5,4,6,5,7,6,8)  
y<- c(10, 12, 14, 13, 34, 23, 12, 34, 25, 43) 
mean(x) 
mean(y) 
var(x,y) 
cor(x,y) 
t.test(x) 
t.test(x,y) 
t.test(x,y,var.equal=T)  
var.test(x,y)   #To compare variances of x and y. 
The commands rbind and cbind can be used to merge row or column vectors to matrices. 
Try the following: 
x <- c(1,2,3) 
y <- c(4,5,6) 
A = cbind(x,y) 
B = rbind(x,y) 
C = t(B) 
The last command gives the matrix transpose of B. Now type A, B or C to see what the 
different matrices look like.   

 
5. Simple Graphics 
Graphics - one of the most important aspects of presentation and analysis of data is 
generation of proper graphics. Graphic features of a data can be viewed very effectively 
using R.  R is capable of creating high quality graphics. Graphs are typically created 
using a series of high-level and low-level plotting commands. High-level functions create 
new plots and low-level functions add information to an existing plot. Customize graphs 
(line style, symbols, color, etc) by specifying graphical parameters. Specify graphic 
options using the par() function. The function par() is used to set or get graphical 
parameters. This function contains 70 possible settings and allows you to adjust almost 
any feature of a graph. Graphic parameters are reset to the defaults with each new graphic 
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device. Most elements of par() can be set as additional arguments to a plot command, 
however there are some that can only be set by a call to par(), mfrow, mfcol see the 
documentation for others.  

Scatterplot And Line Graphs 
Scatter plots: are useful for studying dependencies between variables.  

• The plot() function is used for producing scatterplots and line graphs 
See ? plot 

• Using the plot command 
x <- seq(0,10,0.2) 
y <- sqrt(x) 
plot(x,y); grid() 

• As one might guess, the last command adds a grid to the plot. 

 
plot(x,y); grid() 
plot(x,y, type="b", col="blue", lwd=1, lty=4, pch=5, main="My plot", xlab="x axis", 
ylab="y axis") 
grid(col="red") 

    
Common arguments for plot() 

type   1-character string denoting the plot type 
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xlim   x limits, c(x1, x2) 
ylim   y limits, c(y1, y2) 
main   Main title for the plot 
sub   Sub title for the plot 
xlab   x-axis label 
ylab   y-axis label 
col                   Color for lines and points 
pch   Number referencing a plotting symbol or a character string 
cex   A number giving the character expansion of the plot symbols 
lty   Number referencing a line type 
lwd   Line width 

plot(x,y,type="b",col="blue",lwd=1,lty=4,pch=5, main="My plot", xlab="x axis", 
ylab="y axis") 
grid(col="red") 
text(8,2,"this is my example plot") 
abline(h=1,v=4, col=c("darkred","green"), lty=c(1,4), lwd=c(4,6)) 
reg.lm=lm(x~y) 
abline(reg.lm, col="red",lwd=6)    #To add the regression line 

    
There is wealth of plotting parameters you can set 

plot(x,y) 
plot(x,y, pch=16) : plot with new mark with dark circle 
x1<- seq(1,5,0.1) 
lines(x1,.5*x1)  #lines will add (x,y) values 



R SOFTWARE - AN OVERVIEW 

 

23.10 
 

  
dx<- rnorm(20,5,5)   ## generate 100 random number from standard normal 

distribution 
dy<- rchisq(20,5)   ## generate 100 random number from chisq distribution with mean 

5 
plot(dx,dy,pch=1) 
fit<-lm(dx~dy) 
abline(fit,col="red",lwd=4) 
text(10,4,"Fitted line") 

 
See ? plot  
See ? points 

x <- rnorm(50) ;y <- rnorm(50) 
group <- rbinom(50, size=1, prob=.5) 

Basic Scatterplot 
plot(x, y) 
plot(x, y, xlab="X values", ylab="Y values", main="Simple Y vs X", pch=15, 

col="red") 
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# Distinguish between two separate groups 
plot(x, y, xlab="X values", ylab="Y values", main="Grouped data Y vs X", 
pch=ifelse(group==1, 5, 19), col=ifelse(group==1, "red", "blue")) 

  
plot(x, y, xlab="X", ylab="Y", main="Y vs X", type="n") 
points(x[group==1], y[group==1], pch=5, col="red") 
points(x[group==0], y[group==0], pch=19, col="blue") 
plot(x, y, xlab="X", ylab="Y", main="Y vs X", type="n") 
points(cbind(x,y)[group==1,], pch=5, col="red") 
points(cbind(x,y)[group==0,], pch=19, col="blue") 

Line Graphs 
plot(sort(x), sort(y), type="l", lty=2, lwd=2, col="blue") 
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plot(x, y, type="n") 
lines(sort(x), sort(y), type="b") 
lines(cbind(sort(x),sort(y)), type="l", lty=1, col="blue") 
plot(sort(x), type="n") 
lines(sort(x), type="b", pch=8, col="red") 
lines(sort(y), type="l", lty=6, col="blue") 

   
Histogram 
Histograms: used to study the distribution of continuous data, use command hist.  
hist: function to plot histogram  

u<- rnorm(100)  # generate 100 random numbers from SND 
hist(u)       #default histogram 
hist(u, density=20)  #with shading 
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The sequence of commands below plots two histograms in one window 
par(mfrow=c(a,b)) gives a rows with b plots on each row. Try  
par(mfrow=c(1,2)); hist(u);hist(u, density=50) 

 

 
#with specific number of bins 
par(mfrow=c(1,2)); hist(u, density=5, breaks=20); hist(u, density=20, breaks=20) 

 

 
Read in the help file about hist- help(hist) 
# Proportion, instead of frequency also specifying y-axis 

hist(u, density=20, breaks=-3:3, ylim=c(0,.5), prob=TRUE) 
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hist(u,freq=F,ylim = c(0,0.8)) 
curve(dnorm(x), col = 2, lty = 2, lwd = 2, add = TRUE) 

The freq=F argument to hist ensures that the histogram is in terms of densities 
rather than absolute counts 

 
# overlay normal curve with x-lab and ylim 
# colored normal curve 
# Uses the observed mean and standard deviation for plotting the normal curve 

m<-mean(u) ;std<-sqrt(var(u)) 
hist(u, density=20, breaks=20, prob=TRUE, xlab="x-variable", col="red", 
ylim=c(0, 0.7), main="normal curve over histogram") 
curve(dnorm(x, mean=m, sd=std), col="darkblue", lwd=2, add=TRUE) 

 
hist(u, density=10, breaks=20, col="red", prob=TRUE, xlab="x-variable", 
ylim=c(0,0.8),main="Density curve over histogram")  
lines(density(u),col = "blue") 
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Boxplots  
Boxplots: also a useful tool for studying data. It shows the median, quartiles and possible 
outliers. The R command is boxplot, which we use on the same variables as the 
histogram: 
boxplot(u, xlab="my variable", boxwex=.4) # Basic boxplot 
boxplot(u, xlab="my variable", boxwex=.6, col="blue", border= "red”, lty=2, lwd=2) 

  
 

## we create data: three variables 
u1<- rnorm(100)      ## generate 100 random number from standard normal distribution 
u2<- rchisq(100,5)   ## generate 100 random number from chisq distribution with mean 5 
u3<- rnorm(100,5,1)  ## generate 100 random number from normal distribution with 
mean 5, sd 1 
boxplot(u1,u2,u3, boxwex=.4) 
boxplot(u1,u2,u3, boxwex=c(.2,.4,.6),col=c("red","blue","green")) 

   
variablename<-c("low","medium", "high") 
boxplot(u1,u2,u3,names=variablename,boxwex=c(.2,.4,.6), col=c("red","blue","green"),  
ylim=c(-5, 20), xlab="variable status") 
boxplot(u1,u2,u3,names=variablename, 
boxwex=c(.2,.4,.6),col=c("red","blue","green"),ylim=c(-5, 20),xlab="variable status", 
notch = TRUE) 
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## try  

boxplot(u, xlab="my variable", pars = list(boxwex = 0.5, staplewex = .5, outwex = 
0.5),plot = F) 
boxplot(u, xlab="my variable", pars = list(boxwex = 0.5, staplewex = .5, outwex = 
0.5),plot = T) 

?boxplot 
Barchart (Or Barplot) 

The R command is barplot  
MPCE <- c(400, 300,600,550,425) 
Suppose data in MPCE are average MPCE of some states whose names are to be assigned 
against their value. Following commands are required: 
names(MPCE)<-c("UP","MP","Punjab","TN","WB") 
To assign names of states. Double quotation mark “ ” means that names are characters not 
numeric. 
barplot(MPCE, names=names(MPCE), ylab="MPCE (Rs)",col="blue") 
barplot(MPCE, names=names(MPCE),ylab="MPCE (Rs)", col = 
c("blue","red","gray","orange","black"))                
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barplot(MPCE, space=2,names=names(MPCE),xlab="States",  ylab="MPCE (Rs)",                                                       
col = c("blue","red","gray","orange","black"))   
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?barplot 

Curve 

• The function curve() draws a curve corresponding to a given function 

• If the function is written within curve() it needs to be a function of x 

• If you want to use a multiple argument function, use x for the argument 
you wish to plot over  

# Plot a 5th order polynomial 
curve(3*x^5-5*x^3+2*x, from=-1.25, to=1.25, lwd=2, col="blue") 

 
# Plot the gamma density 
  curve(dgamma(x, shape=2, scale=1), from=0, to=7, lwd=2, col="red") 
# Plot multiple curves, notice that the first curve determines the x-axis 
curve(dnorm, from=-3, to=5, lwd=2, col="red") 
curve(dnorm(x, mean=2), lwd=2, col="blue", add=TRUE) 
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# Add vertical lines at the means 
lines(c(0, 0), c(0, dnorm(0)), lty=2, col="red") 
lines(c(2, 2), c(0, dnorm(2, mean=2)), lty=2, col="blue") 
 

 
Saving Graphs 

• Graphs can be saved using several different formats, such as PDFs, JPEGs, and 
BMPs, by using pdf(), jpeg() and bmp(), respectively 

• Graphs are saved to the current working directory 

Save graphics by choosing File -> Save as 

• # Create a single pdf of figures, with one graph on each page 
pdf("SavingExample.pdf", width=7, height=5)   # Start graphics device 
pdf("C://SavingExample.pdf", width=7, height=5)  

x <- rnorm(100) 
hist(x, main="Histogram of X") 
plot(x, main="Scatterplot of X") 
dev.off()                                    # Stop graphics device 

# Create multiple pdfs of figures, with one pdf per figure 
pdf(width=7, height=5, onefile=FALSE) 
x <- rnorm(100) 
hist(x, main="Histogram of X") 
plot(x, main="Scatterplot of X") 
dev.off()     # Stop graphics device 

 
6. Packages 

• Packages are collections of R functions, data, and compiled code in a well-
defined format. The directory where packages are stored is called the library 

• The base distribution comes with some high priority add on packages, for 
example, boot, nlme, stats, grid, foreign, MASS, spatial etc  
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• The packages included as default in base distribution implement standard 
statistical functionality, for example, linear models, classical tests etc 

• Packages not included in the base distribution can be downloaded and installed 
directly from R prompt 

• Once installed, they have to be loaded into the session to be used 

• Currently, the CRAN package repository has 4348 packages 

• library()       # To see all installed  packages  

• help("INSTALL") or help("install.packages") in R for information on how to 
install packages from this repository 

Adding Packages 

• Choose Install Packages from the Packages menu 

• Select a CRAN Mirror 

• Select a package (e.g. car) 

• Then use the library(package) function to load it for use (e.g. library(car)) 
 

7. Handling Data 
Creating data frames 
The command data.frame can be used to organize data of different kinds and to extract 
subsets of said data. Assume that we have data about three persons and that we store it as 
follows: 

length <- c(180,175,190) 
weight <- c(75,82,88); 
name <- c("Anil","Ankit","Sunil") 
friends <- data.frame(name,length,weight) 

friends is now a data frame containing the data for the three persons. Data can easily be 
extracted: 

> my.names <- friends$name 
> length1 <- friends$length[1] 
 

8. Reading Data  
Reading data from files 
There are a few principal functions reading data into R 

• read.table, read.csv, for reading tabular data 

• readLines, for reading lines of a text file 

• source, for reading in R code files (inverse of dump) 

• load, for reading in saved workspaces 
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read.csv(file, header = TRUE, sep = ",", quote="\"", dec=".", fill = TRUE, 
comment.char="", ...) 

Specify the package 
library (MASS) 

Set working directory   
setwd("G:/Course")  

Reading ASCII Format  
mydata=read.table("G:/Course/yielddata.txt") 
dim(mydata)  
summary(mydata)  
mydata=read.table("G:/Course /yielddata.txt",header=T) 
dim(mydata) 
summary(mydata)  
names(mydata) 
mydata=read.table(file="yielddata.txt",header=T) 
dim(mydata) 
summary(mydata)  
names(mydata) 
 [1] "Dist"           "Yield"          "MARG_HH_F"      "HH_SIZE"        
 [5] "NetArea"      "Cropedarea"     "Netirrig"       "GrossIrrigated" 
 [9] "Rainfall"       "Fert"           

mydata1=data.frame(mydata) 
mydata1$Yield 
mydata1$Fert 
Extract district with yield less than median yield 
mydata1$Yield[mydata1$Yield<median(mydata1$Yield)] 
Extract data with yield less than median yield 
mydata2=mydata1[mydata1$Yield<median(mydata1$Yield)] 
mydata2=mydata1[mydata1$Yield<median(mydata1$Yield),] 
dim(mydata2) 

Read Data (Execl) 
Call the require library  
Load package XLConnect 
The XLConnect package is part of the Comprehensive R Archive Network (CRAN). It 
can be easily installed by using the install.packages() command in your R session 

 install.packages ("XLConnect") 
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To load the package, use the library() or require() command in your R session 
loadWorkbook() - loading/creating an Excel workbook 

The loadWorkbook() function loads a Microsoft Excel workbook, so that it can then be 
further manipulated.  Setting the create argument to TRUE will ensure the file will be 
created, if it does not exist yet. Both .xls and .xlsx file formats can be used. 

loadWorkbook (filename , create = TRUE ) 
library(XLConnect) 
library (MASS) 
mydata2=loadWorkbook(file="yielddata.xls", create = TRUE) 
readWorksheet(mydata3,sheet="yielddata",,header=T) 

READING DATA IN OTHER FORMAT 

library (foreign) 
Read SPSS Dataset 
MySpssdata=read.spss(file="yielddata.sav", use.value.labels=True, to.data.frame=True) 

Read STAT Dataset 
MyStatdata=read.dta(file="yielddata.dta") 

Writing Data From Files 
write.table(Result, "”MyResults.txt ") 

write(Results,"MyResults2.txt") 
write(Results,"MyResults2.txt",ncolumns=2) 

How to save R workshop 
save.image("myworshop.RData")  

 

9. Analysis of a Data Set 
We will study a data set from the early 70’s, with data about different cars (Cars data set). 
Load the data set by writing 

> data(mtcars) 
You can read more about the data by looking at the help file: 

> ?mtcars 

mtcars               package:datasets               R Documentation 
Motor Trend Car Road Tests 
Description: 
     The data was extracted from the 1974 _Motor Trend_ US magazine, 
     and comprises fuel consumption and 10 aspects of automobile design 
     and performance for 32 automobiles (1973-74 models). 
Usage: 
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     mtcars 
Format: 
     A data frame with 32 observations on 11 variables. 
       [, 1]  mpg   Miles/(US) gallon 
       [, 2]  cyl   Number of cylinders 
       [, 3]  disp  Displacement (cu.in.) 
       [, 4]  hp    Gross horsepower 
       [, 5]  drat  Rear axle ratio 
       [, 6]  wt    Weight (lb/1000) 
       [, 7]  qsec  1/4 mile time 
       [, 8]  vs    V/S 
       [, 9]  am    Transmission (0 = automatic, 1 = manual) 
       [,10]  gear  Number of forward gears 
       [,11]  carb  Number of carburetors 
Source: 
     Henderson and Velleman (1981), Building multiple regression models 
     interactively. _Biometrics_, *37*, 391-411. 

Examples: 
     pairs(mtcars, main = "mtcars data") 

     coplot(mpg ~ disp | as.factor(cyl), data = mtcars, panel = panel.smooth, rows = 1) 

 
Exercise. Answer the following questions using the help file: 

1.  How many cars are included in the data set? 
2.  Which years are the models from? 
3.  What does the mpg value desribe? 

To see the entire data set, simply write 
> mtcars  

Exercise. To get familiar with the data set, answer the following non-statistical questions. 
1.  Are there any cars that weigh more than 5000 (lb/1000)? 
2.  How many cylinder has the motor of the Volvo 142E? 
3.  Are there any cars with 5 forward gears? Do they have automatic or manual 
transmisson? 

Descriptive Statistics 
Data can be summarized using simple measures such as mean, median, standard 
deviation, maximum and minimum and so on. A summary of a few such measures for the 
mtcars data set is obtained by writing  
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> summary(mtcars) 
Measures can also be studied one at a time: 

> mean(mtcars$hp); median(mtcars$hp); quantile(mtcars$wt); max(mtcars$mpg) 
>sd(mtcars$mpg)   # standard deviation 
>var(mtcars$mpg)   # variance 
>sd(mtcars$mpg)^2   # sd*sd=var? 

The command attach is very useful when dealing with data frames. By writing 
attach(mtcars) the references to the variables in mtcars can be shortened; instead of the 
long references above we can write: 

> mean(hp); median(hp); quantile(wt); max(mpg) 
> par(mfrow=c(1,2)); hist(mtcars$mpg); hist(mtcars$wt) 
> boxplot(mtcars$mpg); x11(); boxplot(mtcars$wt) 

The x11 command opens a new window which the next figure will be plotted in.  
> plot(mtcars$wt,mtcars$mpg) 

The correlation (which measures linear dependence) can be calculated using the 
command cor (use to help file to see how). What is the correlation in this case? Does it 
agree with the slope? 

> cor(mtcars$wt,mtcars$mpg) 
Linear regression 

>lm(mtcars$wt~mtcars$mpg) 
Try to see help (lm) 

10. Quitting R 
R can be closed with the command q( ). After issuing the quit command, R asks whether 
to save the workspace or not: 

 
It is usually a good idea to save the workspace, since this creates a special file that can be 
directly read into R, and one can commence working with the same datasets and results 
already generated without a need to start from the scratch again. Saved workspace is in a 
file called .RData, and all the commands given during the same R session are saved in a 
file called .Rhistory. To load the workspace into R again, one can simply double-click on 
the file .Rdata, and R should open automatically with all the data and results loaded. Note 
however that libraries are not loaded automatically, and these should be loaded (if 
needed) before commencing the work. 
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Strengths And Weaknesses Of R 
Strengths 

• free and open source, supported by a strong user community 

• highly extensible and flexible 

• implementation of modern statistical methods 

• moderately flexible graphics with intelligent defaults 

Weaknesses 

• slow or impossible with large data sets 

• non-standard programming paradigms 

References  

• R Development Core Team (2012). R: A language and environment for statistical 
computing. 

•  R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.R-
project.org 
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DATA VISUALIZATION USING R 
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ICAR-Indian Agricultural Statistics Research Institute, New Delhi - 110012 
 

1. Introduction: 
Data visualization is the graphical representation of data that turns raw data into clear and 
meaningful visuals. These visuals like charts, graphs, and maps, data visualization tools 
provide an accessible way to see and understand trends, outliers, and patterns in data. 
Important principles for effective data visualization include keeping it simple, accurate, 
relevant, consistent, and interactive. Key benefits of data visualization include: 
• Visual representations of data are often easier to comprehend than raw numbers. 
• Identifying trends, outliers, and correlations is easier with visual tools. 
• Well-designed visualizations help convey complex data to others in an easily 

digestible format. 
 

2. Getting Started with R and RStudio 
Before diving into data visualization, ensure that you have R and RStudio installed on 
your computer. R is a language for statistical computing and graphics. RStudio is an 
Integrated Development Environment (IDE) for R.  These can be downloaded from 
CRAN and RStudio from RStudio's website. Once installed, launch RStudio, where you 
can interact with R and visualize data effectively. 
 

3. Basic Plotting in R 
R provides a rich set of plotting functions in the base package, allowing users to quickly 
generate a variety of basic plots. 

Common Types of Data Visualizations: 

 
 

 

https://rstudio.com/
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3.1 Charts and Graphs: 
1. Line Charts: A line chart visually displays data trends over time using connected 

data points. It is widely used in various fields for analysing and representing data 
patterns. 
 

  
 
2. Bar Charts: A bar chart is a visual representation of data where individual bars 

represent different categories, and the length of each bar corresponds to the value 
it represents. It is commonly used to compare and show the relationships between 
different data sets. 
 

   
 

3. Pie Charts:  A pie chart is a circle divided into sectors to show the proportion of 
different categories in a dataset. Each sector's size corresponds to the percentage it 
represents, making it effective for visualizing relative proportions. 
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4. Scatter Plots: A scatter plot is a graph showing points in a coordinate system, 
with each point representing a pair of values for two variables. Scatter plots are 
crucial in statistical analysis for identifying associations and understanding data 
distribution. 
 

 
 

3.2 Statistical Visualizations: 
1. Histogram: It visually displays the distribution of data by illustrating how values 

are distributed across different ranges or bins. It provides insights into the central 
tendency and spread of the data, making it a valuable tool for understanding 
patterns and trends within a dataset. 
 

 

 
2. Box Plots: A box plot graphically represents the five-number summary, offering a 

concise overview of the data's central tendency and spread. The five-number 
summary includes the minimum, maximum, median (50th percentile), lower 
quartile (Q1, 25th percentile), and upper quartile (Q3, 75th percentile). In a box 
plot, a central box spans the interquartile range (from Q1 to Q3), with a line inside 
marking the median. Lines extend from the box to the smallest and largest 
observations. Box plots can be oriented either horizontally or vertically. 
Additionally, a box plot may identify potential outliers. They serve as effective 
tools for conveying information about the location and variation within datasets, 
particularly for highlighting changes between different data groups. 
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3.3 Spatial Visualizations: 
1. Maps: Represent geographical data and patterns. 

 
 

2. Heatmaps: Display the magnitude of a phenomenon in a matrix format. 
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3.4 Specialized Visualizations: 
Bubble Charts: Represent three dimensions of data using x, y, and bubble size. 

 
 
4.  Conclusion 
Data visualization is an essential skill for effective data analysis, as it allows complex 
data to be communicated in an intuitive and accessible way. R, a powerful programming 
language for statistical computing, offers an extensive range of visualization tools for 
various needs. It includes basic charting options like bar graphs, histograms, and line 
plots, which are ideal for simple data exploration. These tools allow users to easily 
examine trends, distributions, and relationships in data. With R’s straightforward 
approach, users can quickly generate clear and meaningful visuals, making it a great 
choice for beginners and those seeking simplicity. This ease of use, combined with its 
versatility, ensures that data insights are presented in a clear and effective manner, 
helping analysts and decision-makers interpret information with confidence. R's basic 
visualization tools lay the foundation for any data story, supporting a wide range of 
analytical purposes. 
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ANALYSIS OF SURVEY DATA USING R SOFTWARE  
Raju Kumar and Deepak Singh 
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1. Introduction 
A sample survey is a method for collecting data from or about the members of a 
population so that inferences about the entire population can be obtained from a subset, or 
sample, of the population members. In other words, it is a way of collecting information 
from a random sample of observations drawn from a population of interest using a 
probability-based sample design. Certain strategies are frequently employed in sample 
surveys to improve precision and control survey data collection expenses. These methods 
introduce a complexity to the analysis, which must be taken into account in order to 
create unbiased estimates and their associated precision levels. This paper gives a quick 
overview of how these design complications affect sampling variance and then outlines 
how to use the survey function in software R to analyze sample survey data. 
 

2. Complex Sample Designs 
Statistical methods are involved in carrying out a study include planning, designing, 
collecting data, analyzing, drawing meaning interpretation and reporting of the research 
findings. Statistical methods for estimating population parameters and their associated 
variances are based on assumptions about the characteristics and underlying distribution 
of the observations. Statistical methods in most general-purpose statistical software tacitly 
assume that the data meet certain assumptions. Among these assumptions are that the 
observations were selected independently and that each observation had the same 
probability of being selected. Data collected through surveys often have sampling 
schemes that deviate from these assumptions. For logistical reasons, samples are often 
clustered geographically to reduce costs of administering the survey, and it is not unusual 
to sample households, then subsample families and/or persons within selected 
households. In these situations, sample members are not selected independently, nor are 
their responses likely to be independently distributed.  
In addition, a common survey sampling practice is to oversample certain population 
subgroups to ensure sufficient representation in the final sample to support separate 
analyses. This is particularly common for certain policy-relevant subgroups, such as 
ethnic and racial minorities, the poor, the elderly, and the disabled. In this situation, 
sample members do not have equal probabilities of selection. Adjustments to sampling 
weights (the inverse of the probability of selection) to account for nonresponse, as well as 
other weighting adjustments (such as post stratification to known population totals), 
further exacerbate the disparity in the weights among sample members.  
In brief, the complications in a complex survey sample result from following: 
- Stratification- Dividing the population into relatively homogenous groups (strata) 

and sampling a predetermined number from each stratum will increase precision for a 
given sample size. 
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- Clustering- Dividing the population into groups and sampling from a random subset 
of these groups (e.g. geographical locations) will decrease precision for a given 
sample size but often increase precision for a given cost. 

- Unequal sampling- Sampling small subpopulations more heavily will tend to 
increase precision relative to a simple random sample of the same size.  

- Finite population- Sampling all of a population or stratum results in an estimate with 
no variability, and sampling a substantial fraction of a stratum results in decreased 
variability in comparison to a sample from an infinite population. I have described 
these in terms of their effect on the design of the survey. 

- Weighting -When units are sampled with unequal probability it is necessary to give 
them correspondingly unequal weights in the analysis. The inverse-probability 
weighting has generally the same effect on point estimates as the more familiar 
inverse-variance weighting, but very different effects on standard errors.  

Most standard statistical procedures in software packages commonly used for data 
analysis do not allow the analyst to take most of these properties of survey data into 
account unless specialized survey procedures are used. That is standard methods of 
statistical analysis assume that survey data arise from a simple random sample of the 
target population. Little attention is given to characteristics often associated with survey 
data, including missing data, unequal probabilities of observation, stratified multistage 
sample designs, and measurement errors. Failure to do so can have an important impact 
on the results of all types of analysis, ranging from simple descriptive statistics to 
estimates of parameters of multivariate models. 
 

3. Impact of Complex Sample Design on Sampling Variance 
Because of these deviations from standard assumptions about sampling, such survey 
sample designs are often referred to as complex. While stratification in the sampling 
process can decrease the sampling variance, clustering and unequal selection probabilities 
generally increase the sampling variance associated with resulting estimates. Not 
accounting for the impact of the complex sample design can lead to an underestimate of 
the sampling variance associated with an estimate. So while standard software packages 
can generally produce an unbiased weighted survey estimate, it is quite possible to have 
an underestimate of the precision of such an estimate when using one of these packages to 
analyze survey data.  
That is, analyzing a stratified sample as if it were a simple random sample will 
overestimate the standard errors, analyzing a cluster sample as if it were a simple random 
sample will usually underestimate the standard errors, as will analyzing an unequal 
probability sample as if it were a simple random sample.  
The magnitude of this effect on the variance is commonly measured by what is known as 
the design effect. The design effect is the sampling variance of an estimate, accounting 
for the complex sample design, divided by the sampling variance of the same estimate, 
assuming a sample of equal size had been selected as a simple random sample. A design 
effect of unity indicates that the design had no impact on the variance of the estimate. A 
design effect greater than one indicates that the design has increased the variance, and a 
design effect less than one indicates that the design actually decreased the variance of the 
estimate. The design effect can be used to determine the effective sample size, simply by 
dividing the nominal sample size by the design effect. The effective sample size gives the 



ANALYSIS OF SURVEY DATA USING R SOFTWARE  

 

25.3 
 

number of observations that would yield an equivalent level of precision from an 
independent and identically distributed (iid) sample.  
 

4. Software Packages R for Survey data analysis 
Several packages are available to the public designed specifically for use with sample 
survey data. However, this lecture will discuss only Software R for analyzing complex 
surveys. The survey functions for R were contributed by Thomas Lumley, Department of 
Biostatistics, University of Washington, USA.  

Types of designs that can be accommodated  
• Designs incorporating stratification, clustering, and possibly multistage sampling, 

allowing unequal sampling probabilities or weights.  
• Simple two-phase designs  
• Multiply-imputed data  

Types of estimates and statistical analyses that can be done in R 
• Mean, Totals, Quantiles, Variance, Tables, Ratios,  
• Generalised linear models (e.g. linear regression, logistic regression etc.)  
• Proportional hazards models  
• Proportional odds and other cumulative link models  
• Survival curves  
• Post-stratification, raking, and calibration  
• Tests of association in two-way tables  

Restrictions on number of variables or observations: Only those due to limitations of 
available memory or disk capacity.  
Variance estimation methods: Taylor series linearization and replication weighting.  

Platforms on which the software can be run  
• Intel computers with Windows 2000 or better  
• Mac OS X 10.3 or later  
• Linux  
• Most Unix systems.  

Pricing and terms: Free download. R is updated about twice per year and the survey 
package is updated as needed.   
 

5. Implementation of survey package in R 
First install survey package. The command svydesign in library (survey) is used for 
survey data analysis in R, described as below.  

svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc) 
where different arguments of function svydesign() are  
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ids Formula or data frame specifying cluster ids from largest level to smallest 
level, ~0 or ~1 is a formula for no clusters. 

probs Formula or data frame specifying cluster sampling probabilities 

strata Formula or vector specifying strata, use NULL for no strata 

variables Formula or data frame specifying the variables measured in the survey. If 
NULL, the data argument is used. 

fpc Finite population correction 

weights Formula or vector specifying sampling weights as an alternative to prob 

data Data frame to look up variables in the formula arguments 

nest If TRUE, relabel cluster ids to enforce nesting within strata 

check.strata If TRUE, check that clusters are nested in strata 

The svydesign object combines a data frame and all the survey design information 
needed to analyse it. These objects are used by the survey modelling and summary 
functions. The id argument is always required, the strata, fpc, weights and probs 
arguments are optional. If these variables are specified they must not have any missing 
values.  
By default, svydesign assumes that all PSUs, even those in different strata, have a unique 
value of the id variable. This allows some data errors to be detected. If your PSUs reuse 
the same identifiers across strata then set nest=TRUE.  
The finite population correction (fpc) is used to reduce the variance when a substantial 
fraction of the total population of interest has been sampled. It may not be appropriate if 
the target of inference is the process generating the data rather than the statistics of a 
particular finite population.  
The finite population correction can be specified either as the total population size in each 
stratum or as the fraction of the total population that has been sampled. In either case the 
relevant population size is the sampling units. That is, sampling 100 units from a 
population stratum of size 500 can be specified as 500 or as 100/500=0.2.  
If population sizes are specified but not sampling probabilities or weights, the sampling 
probabilities will be computed from the population sizes assuming simple random 
sampling within strata.  
For multistage sampling the id argument should specify a formula with the cluster 
identifiers at each stage. If subsequent stages are stratified strata should also be specified 
as a formula with stratum identifiers at each stage. The population size for each level of 
sampling should also be specified in fpc. If fpc is not specified then sampling is assumed 
to be with replacement at the top level and only the first stage of cluster is used in 
computing variances. If fpc is specified but for fewer stages than id, sampling is assumed 
to be complete for subsequent stages. The variance calculations for multistage sampling 
assume simple or stratified random sampling within clusters at each stage except possibly 
the last.  
If the strata with one only PSU are not self-representing (or they are, but svydesign 
cannot tell based on fpc) then the handling of these strata for variance computation is 
determined by options ("survey.lonely.psu").  
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 Example -Read the api data - Academic Performance Index (api) is computed for all 
California schools. The full population data in apipop are a data frame with 6194 
observations on the 37 variables. Read apipop data available in survey package 

data(api)  #This load the api population data apipop  
dim(apipop)    # Shows the dimension of the data set 

The details of 37 variables are  
1. cds   Unique identifier  
2. stype   Elementary/Middle/High School  
3. name   School name (15 characters)  
4. sname   School name (40 characters)  
5. snum   School number  
6. dname   District name  
7. dnum   District number  
8. cname   County name  
9. cnum   County number  
10. flag   reason for missing data  
11. pcttest   percentage of students tested  
12. api00   API in 2000  
13. api99   API in 1999  
14. target   target for change in API  
15. growth   Change in API  
16. sch.wide  Met school-wide growth target?  
17. comp.imp  Met Comparable Improvement target  
18. both   Met both targets  
19. awards  Eligible for awards program  
20. meals   Percentage of students eligible for subsidized meals  
21. ell   `English Language Learners' (percent)  
22. yr.rnd   Year-round school  
23. mobility  percent of students for whom this is the first year at the school  
24. acs.k3   average class size years K-3  
25. acs.46   average class size years 4-6  
26. acs.core  Number of core academic courses  
27. pct.resp  percent where parental education level is known  
28. not.hsg  percent parents not high-school graduates  
29. hsg   percent parents who are high-school graduates  
30. some.col  percent parents with some college  
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31. col.grad  percent parents with college degree  
32. grad.sch   percent parents with postgraduate education  
33. avg.ed   average parental education level  
34. full   percent fully qualified teachers  
35. emer   percent teachers with emergency qualifications  
36. enroll   number of students enrolled  
37. api.stu   number of students tested.  
 
Type summary(apipop) and see what you get? 
The other data sets contain additional variables pw for sampling weights and fpc to 
compute finite population corrections to variance. apipop is the entire population, 
apiclus1 is a cluster sample of school districts, apistrat is a sample stratified by stype, 
and apiclus2 is a two-stage cluster sample of schools within districts. The sampling 
weights in apiclus1 are incorrect (the weight should be 757/15) but are as obtained from 
UCLA.  Data were obtained from the survey sampling help pages of UCLA Academic 
Technology Services, at  
http://www.ats.ucla.edu/stat/stata/Library/svy_survey.htm.  
The API program and original data files are at http://api.cde.ca.gov/ 
# api00 is API in 2000  

mean (apipop$api00) 
[1] 664.7126 

# enroll  is number of students enrolled  

sum (apipop$enroll, na.rm=TRUE)  
[1] 3811472 

Here na.rm=TRUE means –logical, Should missing values be removed? 

Specifying a complex survey design – use function svydesign () 
[i]  Stratified sample 
Here we use data set apistrat, see dim(apistrat), c(apistrat[1,]), attach(apistrat) commands 
etc.  

dstrat<- svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc) 
summary(dstrat) 
 

Stratified Independent Sampling design 
svydesign(id = ~1, strata = ~stype, weights = ~pw, data = apistrat,  fpc = ~fpc) 
Probabilities: 
  Min.   1st Qu.   Median     Mean   3rd Qu.      Max.  

0.02262   0.02262  0.03587  0.04014  0.05339   0.06623  

http://www.ats.ucla.edu/stat/stata/Library/svy_survey.htm
http://api.cde.ca.gov/
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Stratum Sizes:  
              E   H   M 
obs          100  50  50 
design.PSU   100  50  50 
actual.PSU   100  50  50 
Population stratum sizes (PSUs):  
      E     M     H  
                            4421  1018   755  
Data variables: 
 [1] "cds"      "stype"    "name"     "sname"    "snum"     "dname"    
 [7] "dnum"     "cname"    "cnum"     "flag"     "pcttest"  "api00"    
[13] "api99"    "target"   "growth"   "sch.wide" "comp.imp" "both"     
[19] "awards"   "meals"    "ell"      "yr.rnd"   "mobility" "acs.k3"   
[25] "acs.46"   "acs.core" "pct.resp" "not.hsg"  "hsg"      "some.col" 
[31] "col.grad" "grad.sch" "avg.ed"   "full"     "emer"     "enroll"   

[37] "api.stu"  "pw"       "fpc"      

Some functions used to compute means, variances, ratios and totals for data from 
complex surveys are as follows.  
svymean () and svytotal () functions are use to extract mean and total estimate along with 
their standard error, specified as below.  
svymean(x, design, na.rm=FALSE,deff=FALSE,...) 
svytotal(x, design, na.rm=FALSE,deff=FALSE,...) 

Arguments 

x A formula, vector or matrix 
design survey.design or svyrep.design object 
na.rm Should cases with missing values be dropped? 
rho parameter for Fay's variance estimator in a BRR design 
return.replicates Return the replicate means? 
deff Return the design effect 
object The result of one of the other survey summary functions 
quietly Don't warn when there is no design effect computed 
estimate.only Don't compute standard errors (useful when svyvar is used to estimate 

the design effect) 
names vector of character strings 

Also see  
Svyvar (x, design, na.rm=FALSE,...) 
svyratio (x, design, na.rm=FALSE,...) 
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svyquantile (x, design, na.rm=FALSE,...) 

svymean(~api00, dstrat) 
            mean      SE 

api00   662.29  9.4089 

svymean(~api00, dstrat, deff=TRUE) 
             mean        SE     DEff 

api00   662.29    9.4089  1.2045 

svytotal(~enroll, dstrat, na.rm=TRUE) 
            total       SE 

enroll   3687178   114642 
  #stratified sample, Now try these code for your self 
 dstrat<-svydesign(id=~1, strata=~stype, weights=~pw, data=apistrat, fpc=~fpc) 
  summary(dstrat) 
  svymean(~api00, dstrat) 
  svyquantile(~api00, dstrat, c(.25,.5,.75)) 
  svyvar(~api00, dstrat) 
  svytotal(~enroll, dstrat) 
  svyratio(~api.stu, ~enroll, dstrat) 
  # coefficients of variation  
  cv(svytotal(~enroll,dstrat)) 

[ii] One-stage cluster sample 
  dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc) 
  summary(dclus1) 
  svymean(~api00, dclus1, deff=TRUE) 
  svymean(~factor(stype),dclus1) 
  svymean(~interaction(stype, comp.imp), dclus1) 
  svyquantile(~api00, dclus1, c(.25,.5,.75)) 
  svyvar(~api00, dclus1) 
  svytotal(~enroll, dclus1, deff=TRUE) 
  svyratio(~api.stu, ~enroll, dclus1) 

summary(dclus1) 

1 - level Cluster Sampling design 
With (15) clusters. 
svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc) 

Probabilities: 
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   Min.   1st Qu.    Median     Mean   3rd Qu.    Max.  
0.02954  0.02954   0.02954  0.02954  0.02954   0.02954  
Population size (PSUs): 757  
Data variables: 
 [1] "cds"      "stype"    "name"     "sname"    "snum"     "dname"    
 [7] "dnum"     "cname"    "cnum"     "flag"     "pcttest"  "api00"    
[13] "api99"    "target"   "growth"   "sch.wide" "comp.imp" "both"     
[19] "awards"   "meals"    "ell"      "yr.rnd"   "mobility" "acs.k3"   
[25] "acs.46"   "acs.core" "pct.resp" "not.hsg"  "hsg"      "some.col" 
[31] "col.grad" "grad.sch" "avg.ed"   "full"     "emer"     "enroll"   

[37] "api.stu"  "fpc"      "pw"       

svymean(~api00, dclus1) 
           mean      SE 

api00   644.17  23.542 

svytotal(~enroll, dclus1, na.rm=TRUE) 
            total      SE 

enroll  3404940  932235 

[iii] Two-stage cluster sample 
 dclus2<-svydesign(id=~dnum+snum, fpc=~fpc1+fpc2, data=apiclus2) 
 summary(dclus2) 

2 - level Cluster Sampling design 
With (40, 126) clusters. 
svydesign(id = ~dnum + snum, fpc = ~fpc1 + fpc2, data = apiclus2) 
Probabilities: 
    Min.   1st Qu.     Median      Mean    3rd Qu.      Max.  
0.003669  0.037740  0.052840  0.042390  0.052840  0.052840  
 
Population size (PSUs): 757  
Data variables: 
 [1] "cds"      "stype"    "name"     "sname"    "snum"     "dname"    
 [7] "dnum"     "cname"    "cnum"     "flag"     "pcttest"  "api00"    
[13] "api99"    "target"   "growth"   "sch.wide" "comp.imp" "both"     
[19] "awards"   "meals"    "ell"      "yr.rnd"   "mobility" "acs.k3"   
[25] "acs.46"   "acs.core" "pct.resp" "not.hsg"  "hsg"      "some.col" 

[31] "col.grad" "grad.sch" "avg.ed"   "full"     "emer"     "enroll"   
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[37] "api.stu"  "pw"       "fpc1"     "fpc2"     

svymean(~api00, dclus2) 
           mean      SE 

api00  670.81  30.099 

svytotal(~enroll, dclus2, na.rm=TRUE) 
           total       SE 

enroll  2639273  799638 

[iv] Two-stage `with replacement' 
dclus2wr<-svydesign(id=~dnum+snum, weights=~pw, data=apiclus2) 
summary(dclus2wr) 

2 - level Cluster Sampling design (with replacement) 
With (40, 126) clusters. 
svydesign(id = ~dnum + snum, weights = ~pw, data = apiclus2) 
Probabilities: 
    Min.    1st Qu.    Median      Mean    3rd Qu.      Max.  
0.003669   0.037740  0.052840  0.042390  0.052840      0.052840  
Data variables: 
 [1] "cds"      "stype"    "name"     "sname"    "snum"     "dname"    
 [7] "dnum"     "cname"    "cnum"     "flag"     "pcttest"  "api00"    
[13] "api99"    "target"   "growth"   "sch.wide" "comp.imp" "both"     
[19] "awards"   "meals"    "ell"      "yr.rnd"   "mobility" "acs.k3"   
[25] "acs.46"   "acs.core" "pct.resp" "not.hsg"  "hsg"      "some.col" 
[31] "col.grad" "grad.sch" "avg.ed"   "full"     "emer"     "enroll"   

[37] "api.stu"  "pw"       "fpc1"     "fpc2"     

svymean(~api00, dclus2wr) 
           mean      SE 

api00   670.81  30.712 

svytotal(~enroll, dclus2wr, na.rm=TRUE) 
            total      SE 

enroll   2639273  820261 

Reference 
Lumley, T.  (2010). Complex Surveys: A Guide to Analysis Using R. Wiley Series in 

Survey Methodology. 
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1. Introduction 
R is a powerful statistical programming language widely used in data science, machine 
learning, and research. One of its key strengths lies in its extensibility, allowing users to 
develop their own R packages to share code, functions, and datasets efficiently. 
Developing an R package is essential for creating reusable and maintainable code, 
contributing to the open-source community, and enhancing reproducibility in research. This 
article provides a step-by-step guide to developing an R package, covering package 
structure, documentation, testing, and publishing on CRAN (Comprehensive R Archive 
Network) or GitHub. 

Why Develop an R Package? 
Developing an R package offers several benefits: 

1. Code Reusability – Functions can be easily shared and reused in different 
projects. 

2. Collaboration – Team members can work with standardized functions. 
3. Documentation – Well-structured packages enhance usability and understanding. 
4. Contribution to the Community – Packages can be published for global use. 

Steps to Develop an R Package 
1. Setting Up the Package 
To create an R package, start by installing the devtools and usethis packages: 

#r console 
install.packages("devtools") 
install.packages("usethis") 
library(devtools) 

library(usethis) 

Now, create the package structure using: 

#r console 
create_package("path/to/package_name") 

This command generates a folder structure with necessary files. 

2. Understanding Package Structure 
An R package consists of: 

• DESCRIPTION – Metadata about the package (title, author, dependencies). 

• NAMESPACE – Specifies which functions are exported. 
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• R/ – Contains all R scripts with functions. 

• man/ – Stores documentation for functions. 

• tests/ – Includes unit tests for checking function correctness. 

• vignettes/ – Provides long-form documentation and use cases. 

3. Writing Functions 
Develop functions inside the R/ directory. Example: 

#r console 
# Save this in R/myfunction.R 
my_function <- function(x, y) { 
  return(x + y) 

} 

4. Documenting Functions 
Use roxygen2 for documentation. Add comments like: 

#r console 
#' Add Two Numbers 
#' 
#' This function takes two numbers and returns their sum. 
#' 
#' @param x First number. 
#' @param y Second number. 
#' @return Sum of x and y. 
#' @examples 
#' my_function(3, 5) 
#' @export 
my_function <- function(x, y) { 
  return(x + y) 

} 

Run document() to generate documentation: 

#r console 

devtools::document() 

5. Testing the Package 
Testing ensures reliability. Use testthat to create test cases: 

#r console 

usethis::use_testthat() 
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Write tests inside tests/testthat/: 

#r console 
test_that("my_function works correctly", { 
  expect_equal(my_function(2, 3), 5) 
  expect_equal(my_function(-1, 1), 0) 

}) 

Run tests using: 

#r console 
devtools::test() 

6. Checking and Building the Package 
Before releasing, check the package: 

#r console 
devtools::check() 

To build the package: 
r 
devtools::build() 

7. Publishing the Package 
Publishing on GitHub 
If you want to share your package on GitHub, use: 

#r console 
usethis::use_git() 

usethis::use_github() 

Users can install your package via: 

#r console 
devtools::install_github("username/package_name") 

Publishing on CRAN 
To publish on CRAN: 

1. Check your package with devtools::check() 
2. Submit using usethis::use_cran_submission() 
3. Follow CRAN guidelines and respond to reviewer feedback. 

Conclusion 
Developing an R package is a structured process that enhances reproducibility, usability, 
and collaboration in research and data science. By following best practices in 
documentation, testing, and distribution, you can create robust and valuable R packages for 
personal or community use. 
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1. Introduction:  
Python is the one of the most popular programming languages now-a-days. It is a high-
level, interpreted, interactive, object-oriented programming language. Python language 
was created by Guido van Rossum in 1991 at the National Research Institute for 
Mathematics and Computer Science in the Netherlands. Python programming language is 
mainly used for- 

• Data handling and visualization 

• Analysis of variety of data such as numerical, textual, image, videos, audio etc.  

• Performing complex mathematical computations 

• Server-side scripting for developing web applications. 

• Standalone software development etc.  

Why Python? 
Python is very easy learn language. It can work in any system irrespective of the operating 
system. The syntax of python language is very simple and allows programmers to write 
programs in very few lines. Python runs on an interpreter system, which means that the 
code is being executed as soon as it is written. And last but not least, that python has a very 
large and mature community for the developers. There are lots of blogs, tutorials, 
documents, guide videos available online for python developers. 

Python Installation: 
Most of the latest computer systems have python already installed. To check if you have 
python installed on a Windows PC, search in the start bar for Python or run the following 
on the Command Line (cmd.exe): 

C:\your\python\installation\folder>python --version 
If not, then one can download the latest version of python (latest version is 3.9.2) from 
https://www.python.org/downloads/ for the particular operating system and follow the 
guidelines while installation.  

Getting Started with Python: 
Any python script or file is saved with .py file extension. Let’s write the first python 
program that prints ‘Hello, Everyone!!!’. So, first open a text editor and write the following 
code in it:  

e.g. 
print("Hello, Everyone!!!") 

Now save it as ‘first.py’. Now open command prompt, go to the python installation folder 
and type the following command: 

C:\your\python\installation\path>python /your/program/path/first.py 

https://www.python.org/downloads/
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The output should read: 
Hello, Everyone!!! 

Python from Command Line: 
In case of python, it is possible to run the code as a command line itself using the 
command prompt. 
Type the following on the Windows, Mac or Linux command line: 

C:\your\python\installation\path>python 
From there one can write any python code, including our first example from earlier in the: 

C:\your\python\installation\path>python 
Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.1900 32 bit (Intel)] 
on win32 
Type "help", "copyright", "credits" or "license" for more information. 
>>>  

Which will write "Hello, Everyone!!!" in the command line: 
C:\your\python\installation\path>python  
Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.1900 32 bit (Intel)] 
on win32 
Type "help", "copyright", "credits" or "license" for more information. 
>>> print("Hello, Everyone!!!") 
Hello, Everyone!!! 

Whenever you are done in the python command line, you can simply type the following 
to quit the python command line interface: 

exit() 

Python Syntax: 
The major syntactical rules of python programs has been provided below- 
Execution of code 
a. python can be executed directly from command line. 

>>> print("Hello, Everyone!!!") 
Hello, Everyone!!! 

b. Python can also be executed using a file with ‘.py’ extension 
C:\your\python\installation\path>python /your/program/path/first.py 

Indentation 
The indentation refers to the spaces at the beginning of a program line. Indentation is very 
important and stricter in python. Python uses indentation as a block of code. 

e.g. 
if 5 > 2: 
  print("Five is greater than two!") 
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Comments 
In python, comments can be included in the code by using ‘#’ symbol. Comments can be 
used in the beginning, middle, or in the end pf the code. Comments can be multiline. For 
multiline comments one can use triple quotes ("""). 

Variables in Python:  
In python, the variables are simple storage structures for storing data values. There is no 
requirement of type declaration for the variables in python. The type of any variable can 
be acquired by type() function. 

e.g. 
x = 5 
y = "python" 
print(type(x)) 
print(type(y)) 

In python variables names - 

• are case sensitive 

• Must starts with a letter or underscore 

• Can be alphanumeric  
Python variables can store different types of data.  

Text Type: str 
Numeric Types: int, float, complex 

Sequence Types: list, tuple, range 

Mapping Type: dict 

Set Types: set, frozenset 

Boolean Type: bool 

Binary Types: bytes, bytearray, memoryview 

Operators in Python: 
Python divides the operators in the following groups: 

Arithmetic operators 
 

+, -, /, *, %, **, // 

Assignment operators =, +=, -=, *=, /= 
 

Comparison operators 
 

==, !=, >, <, >=, <= 

Logical operators And, or, not 

Identity operators is, is not, 

Membership operators in, in not 

Bitwise operators &, |, ^, ~, >>, << 
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Data structures in python: 
Data Structures are the way of organizing, storing, manipulating, and accessing data in 
better way. The data structures enable us to can be access and update data in a more 
efficient manner depending upon the situation. Data Structures are fundamentals of any 
programming language around which a program is built. There are mainly four types of 
built-in data structures in python. Python helps to learn the fundamental of these data 
structures in a simpler way as compared to other programming languages. These data 
structures are- 

• List 

• Tuple 

• Set  

• Dictionary 

1. List Data Structures: 
List are used to store more than one data in single variable. In python lists are flexible i.e. 
it can store multiple data type in a single list. 
The characteristics of Lists Data Structures in python are: 

• Items are indexed (starting from 0) 

• Items are ordered 

• Items are changeable 

• Lists allow duplicate values of items 
Creation of List: Lists are created by placing the comma separated items inside the square 
brackets. 
## creation of lists  
list1 = ["apple", "banana", "cherry"]  
list2 = [1, 5, 7, 9, 3]  
list3 = [True, False, False]  
list4 = [1, 2, 3, "GFG", 2.3]  
list5 = [1,2,3,4,4,] 
Accessing Items from List: Items of the lists can be access by mentioning the index or 
indices inside the square brackets. 
## accessing items  
list1 = ["apple", "banana", "cherry"]  
list2 = [1, 5, 7, 9, 3, 6, 9, 2, 1, 10] 
x = list1[0]  
print(x)  
y = list2[1:4]  
print(y) 
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## new list  
new_list = [1, 2, 3, 'example', 3.132, 10, 30] 
#access all elements  
print(new_list)  
#access index 3 element  
print(new_list[3])  
#access elements from 0 to 1 and exclude 2  
print(new_list[0:2])  
#access elements in reverse  
print(new_list[::-1]) 
Updating the list: Items in the list at particular position can be updated by mentioning the 
values in the left-hand side of the assignment operator. 
list2 = [1, 5, 7, 9, 3, 6, 9, 2, 1, 10]  
list2[2] = 34  
print(list2) 
Remove items: Items in the list at particular position can be deleted by del statement. 
list2 = [1, 5, -12, 9, 3, 6, 9, 2, 1, 10]  
del list2[2] print(list2) 

Some common functions operate on list data structures: 
## append(): adds an items or a list of items in at the end of a list  
list1.append(list2) 
## insert(): adds an items at a particular location of a list  
list1.insert(1,'mango') 
## remove(): deletes an item by its value from a list  
list1.remove('banana') 
## clear(): deletes all the elements from the  
list list1.clear() 
## index(): finds the index of the given element in the list  
list1.index('mango') 
## finds the count of the given element present in the list  
list1.count('mango') 
#sorted(): temporarily sorts the elements of the list  
sorted(list1) 
#sort(): permanantly sorts the elements of the list  
list1.sort(reverse=True) 
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Some basic operations on list data structures: 
## Get number of items in a list  
n = len(list1) 
## Concatenate two lists together  
list_new = list1 + list2  
## check membership of an item in a list 
100 in list2 # (gives true or false) 

 
2. Tuple Data Structure: 
Tuples are sequence of immutable objects in python. Tuples can store more than one 
datatype in a single instance of tuple. 
The characteristics of Tuple Data Structures in python are: 

• Items are indexed (starting from 0) 

• Items are ordered 

• Items are non-changeable 

• Tuples allow duplicate values for the items 
Creation of tuples: Tuples are created by placing the comma separated items inside the 
round brackets or parenthesis. 
tuple1 = ("apple", "banana", "cherry")  
tuple2 = (1, 5, 7, 9, 3)  
tuple3 = (True, False, False) 
Accessing items from Tuple: Items of the tuple can be access by mentioning the index or 
indices inside the square brackets. 
## accessing items  
tuple1 = ("apple", "banana", "cherry")  
tuple2 = (1, 5, 7, 9, 3, 6, 9, 2, 1, 10)  
x = tuple1[0]  
print(x)  
y = tuple2[1:4]  
print(y) 
Updating the tuple: Items in the tuples can't be changes once the tuple is created. 
tuple2 = (1, 5, 7, 9, 3, 6, 9, 2, 1, 10)  
tuple2[2] = 34 ## will raise an error print(tuple2) 
Remove items: Items in the tuple can't be deleted as tuples are immutable. However, del 
statement can be used to delete whole tuple instead. 
tup = ('physics', 'chemistry', 1997, 2000)  
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print(tup)  
del tup 
print(tup) ## will raise an error 

Some basic operations on tuple data structures: 
## Get number of items in a tuple  
n = len(tuple1) 
tuple_new = tuple1 + tuple2  
## check membership of an item in a tuple 
100 in tuple2 # (gives true or false) 
 

3. Set Data Structure: 
Mathematically, a set is a collection of items in any order. The sets in python are typically 
used for mathematical operations like union, intersection, difference and complement etc. 
The characteristics of Set Data Structures in python are: 

• Items are unindexed 

• Items are unordered 

• Items are non-changeable. 

• Sets doesn’t allow duplicate values 
Creation of Sets: Sets are created by placing the comma separated items inside curly 
brackets. 
set1 = {"apple", "banana", "cherry"}  
set2 = {1, 5, 7, 9, 3}  
set3 = {True, False, False} 
Accessing items in Sets: Items in the sets can’t be access by mentioning the index number. 
For accessing the items in the Sets one can use any loop structure. 
Days=set(["Mon","Tue","Wed","Thu","Fri","Sat","Sun"]  
for d in Days:     

print(d) 
Adding and deleting items: In Sets, a new item can be added using add() function and an 
existing item can be deleted by discard() function. 
Days=set(["Mon","Tue","Wed","Thu","Fri","Sat"])  
Days.add("Sun")  
print(Days)  
Days.discard("Mon")  
print(Days) 
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Different set operations: 
Union of Sets: The union operation on two sets produces a new set containing all the 
distinct elements from both the sets. In the below example the element “Wed” is present in 
both the sets. Here, pipe (|) operator is used. 
DaysA = set(["Mon","Tue","Wed"]) 
DaysB = set(["Wed","Thu","Fri","Sat","Sun"])  
AllDays = DaysA|DaysB  
print(AllDays) 
Intersection of Sets: The intersection operation on two sets produces a new set containing 
only the common elements from both the sets. Here, ampersand (&) operator is used. 
DaysA = set(["Mon","Tue","Wed"]) 
DaysB = set(["Wed","Thu","Fri","Sat","Sun"])  
AllDays = DaysA & DaysB  
print(AllDays) 
Difference of Sets: The difference operation on two sets produces a new set containing 
only the elements from the rst set and none from the second set. Here, minus (-) operator 
is used. 
DaysA = set(["Mon","Tue","Wed"]) 
DaysB = set(["Wed","Thu","Fri","Sat","Sun"])  
AllDays = DaysA - DaysB  
print(AllDays) 
Compare Sets: We can check if a given set is a subset or superset of another set. 
DaysA = set(["Mon","Tue","Wed"]) 
DaysB = set(["Mon","Tue","Wed","Thu","Fri","Sat","Sun"]) 
SubsetRes = DaysA <= DaysB  
SupersetRes = DaysB >= DaysA  
print(SubsetRes)  
print(SupersetRes) 

4. Dictionary Data Structure: 
Dictionaries are the type of data structure that are used to store data in key:value pair. In 
Dictionary, each key is separated from its value by a colon (:), the items are separated by 
commas, and the whole thing is enclosed in curly braces. 
The characteristics of Dictionaries Data Structures in python are: 

• Items are ordered 

• Items are changeable 

• Dictionary doesn’t allow duplicate values 
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Creation of dictionaries: Dictionaries are created by placing the comma separated 
key:values pairs inside curly brackets. 
dictionary1 = {"brand": "Ford", 

"model": "Mustang", 
"year": 1964} 

x = dictionary1 ["model"]  
print(x) 
Accessing items: Items ca be access by mentioning the key name inside the square bracket. 
dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}  
print ("dict['Name']: ", dict['Name']) 
print ("dict['Age']: ", dict['Age']) 
Updating Dictionary: One can update a dictionary by adding a new entry or a key-value 
pair, modifying an existing entry, or deleting an existing entry. 
dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}  
dict['Age'] = 8;  
# update existing entry  
dict['School'] = "DPS School"  
# Add new entry 
print ("dict['Age']: ", dict['Age']) 
print ("dict['School']: ", dict['School']) 
Delete Dictionary Elements: One can either remove individual dictionary elements or clear 
the entire contents of a dictionary. 
dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}  
del dict['Name'] # remove entry with key 'Name'  
dict.clear() # remove all entries in dict  
del dict  # delete entire dictionary 
print ("dict['Age']: ", dict['Age']) 
print ("dict['School']: ", dict['School']) 

Control Structures in Python: 
There is mainly one control structure that is if...else . The if...else structures are used to 
implement the logical conditions of the program and allow the program to branch based on 
the evaluation of an expression. 
General syntax of if...else : 
if expression :      
    statement 1 
    statement 2 
    ... 
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    statement n else:  
    statement 1      
    statement 2      
    ... 
statement always executed 
N.B. Indentation in the control and loop structures are very crucial in case of python 
programming language. 
## examples of if..else 
## if statement value = 5 
threshold= 4 
print("value is", value, "threshold is ",threshold)  
if value > threshold :      
         print(value, "is bigger than ", threshold) 
## if..else statement a = 330 b = 200 if b > a: 
         print("b is greater than a") else:   print("error") 
Nested control structures: The if..else structures can be used in nested manner by using 
elif statement. 
## nested if.. statements  
### if ... elif ... else ... 
a = 5  
b = 4  
print("a = ", a, "and b = ", b)  
if a > b : 
    print(a, " is greater than ", b)  
elif a == b : 
    print(a, " equals ", b)  
else :      
    print(a, " is less than ", b) 
 

Loop Structures in Python: 
In python generally two types of loop structures are used: while loop and for loop. 

1. while loop: 
With the ‘while’ loop, a set of statements can be executed repeatedly long as a condition is 
true . For the loop to terminate, there has to be some termination criteria mentioned in the 
code which will potentially change the condition and stop the iteration. 

## Simple example  
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i=1  
while i < 6:    
      print(i)    
      i = i + 1 
## sum of n numbers using a while loop  
n = 10  
cur_sum = 0  
i = 1  
while  i <= n : 
     cur_sum = cur_sum + i 
     i = i + 1 
print("The sum of the numbers from 1 to", n, "is ", cur_sum) 

Points to note: 

• Here, the conditional clause (i <= n) in the while statement can be anything which 
would return a boolean value of either True or False upon execution. 

• Initially i has been set to 1 (before the start of the loop) and therefore the condition is 
True. 

• The clause can be made more complex by using parentheses, and and or operators 
amongst others 

• The statements after the while clause are only executed if the condition evaluates as 
True. 

• Within the statements after the while clause there should be something which 
potentially will make the condition evaluate as False next time around. If not the loop 
will never end. 

• In this case the last statement in the loop changes the value of i which is part of the 
condition clause, so hopefully the loop will end. 

2. for loop: 
A for loop is used for iterating over a sequence (that is either a list, a tuple, a dictionary, a 
set, or a string) for executing a set of statements. The difference between while and for loop 
is that in for loop we know that at the outset how often the statements in the loop will be 
executed, we don’t have to rely on a variable being changed within the looping statements 
as in while loop. 
General syntax of for loop: 

for variable_name in some_sequence : 
    statement1 
    statement2 
    ... 
    statementn 
## simple example 
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for i in [1,2,3] : 
    print(i) 
print("\nExample 1\n") 
fruits = ["apple", "banana", "cherry"] 
for x in fruits: 
  print(x) 
 
print("\nExample 2\n") 
for x in "banana": 
  print(x) 
 
print("\nExample 3\n") 
for name in ["Tom", 42, 3.142] : 
    print(name) 
 
print("\nExample 4\n") 
for i in range(10) : 
    print(i) 
 
print("\nExample 5\n") 
longString = "The quick brown fox jumped over the lazy sleeping dog" 
for word in longString.split() : 
    print(word) 

Python Functions: 
A function is a block of code that contains a set of statements and runs only when it is 
called explicitly. One can pass data, known as parameters, into a function. A function can 
return data as a result. 

e.g. 
def my_function(str): 
  print(str + "! Welcome to the class.") 
my_function("Bob") 

Packages in Python: 
Package or module is a python object with arbitrarily named attributes that one can bind 
and reference. Packages allows us to logically locate the python code. Simply a package or 
module is file containing a set of python codes. Packages are also referred as library 
Packages or modules or libraries can be imported by using the ‘import’ keyword. 
e.g. 
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import os 
import sys 
PIP is a package manager available in python. PIP is used to install, upgrade, or uninstall a 
packages in python environment. 

C:\your\python\installation\path>pip install numpy 
 

Some important packages or modules in Python: 
NumPy: 
NumPy is python library or packages used for working with arrays. NumPy was created by 
Travis Oliphant in 2005 and it is open source.  
In python, the concepts of arrays is served by the List data structure but it is too slow in 
processing. NumPy provides a 50x faster access speed for the array objects in python than 
the List. NumPy has a lots of applications in the domain of - 

• Arrays  

• Matrices 

• Linear Algebra 

• Fourier Transformation 
Creating Arrays 
The object of NumPy that deals with the arrays is known as ‘ndarray’. One can create a 
‘ndarray’ object by using array() function. One can pass any type of array-like object in 
the array() function. 
e.g. 
import numpy as np 
array_var = np.array([1, 2, 3, 4, 5]) 
 
Array can be of 0, 1, 2 or 3 dimensions.  
e.g. 
import numpy as np 
array0 = np.array(42) #0 dimension 
array1 = np.array([1, 2, 3, 4, 5, 6, 7, 8]) # 1 dimension 
array2 = np.array([[1, 2, 3], [4, 5, 6]]) # 2 dimension 
array3 = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]]) #3 dimension 
 
Accessing Array elements 
Array elements can be accessed by its index number 
print(array1 [2]) #accessing the 3rd item from the array ‘array1’ 
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Slicing an Array 
Slicing in python means taking elements from one given index to another given index. 
print(array1 [1:3]) #slicing from 2nd item to the 4th element 
print(array1 [2:]) #slicing from 3rd item to the last element 
print(array1 [:6]) #slicing from beginning to the 5th element 
 
Properties and functions: 
dtype- returns the type of values stored in the array object 
shape- gives the number of elements in each dimension of the array object 
reshape– allows to change the shape of the array either by adding adding/removing  
          dimensions or changing the number of elements in each dimension 
concatenate()- joins two or more arrays axis wise. 
array_split()– splitting an array into two or more parts 
 

Matplotlib: 
Matplotlib is a low level graph plotting library in python that serves as a visualization 
utility. Matplotlib was created by John D. Hunter. Matplotlib is open source and we can 
use it freely. 
 
Most of the Matplotlib utilities lies under the pyplot submodule, and are usually imported 
under the plt alias. 
e.g. Draw a line in a diagram from position (0,0) 
to position (10, 200): 
import matplotlib.pyplot as plt 
import numpy as np 
xpoints = np.array([0, 10]) 
ypoints = np.array([0, 200]) 
plt.plot(xpoints, ypoints) 
plt.show() 
 
Properties and functions: 
marker- keyword argument to emphasize each point in the plot 
linestyle/ls- keyword argument to change the style of the plotted line 
xlabel()- functions for setting a label for x-axis 
ylabel()- function for setting a label for y-axis 
title() - function for giving the title for the plot 
grid() -function to add grid lines to the plot 
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scatter()-function to draw a scatter plot 
bar()- function to draw bar graphs 
hist()- function to create histograms 
 
e.g. 
import matplotlib.pyplot as plt 
import numpy as np 
x = np.random.normal(150, 20 , 250) 
plt.hist(x) 
plt.show()  
 

Pandas: 
Pandas is a one of the most popular python package providing high-performance data 
manipulation and analysis tool using its powerful data structures. The name Pandas is 
derived from the word ‘Panel Data’ – an Econometrics from Multidimensional data. Pandas 
is well suited for many different kinds of data: 

• Fast and efficient DataFrame object with default and customized indexing. 

• Tools for loading data into in-memory data objects from different file formats. 

• Data alignment and integrated handling of missing data. 

• Reshaping and pivoting of date sets. 

• Label-based slicing, indexing and subsetting of large data sets. 

• Columns from a data structure can be deleted or inserted. 

• Group by data for aggregation and transformations 
There are mainly two data structures of pandas which handle the majority of typical use 
cases in finance, statistics, social science and Engineering are Series (1-dimensional) and 
DataFrame (2-dimensional). 

DataFrame 
A Data frame is a two-dimensional data structure, i.e., data is aligned in a tabular fashion 
in rows and columns.  
Features of DataFrame: 

• Potentially columns are of different types 

• Size – Mutable 

• Labelled axes (rows and columns) 

• Can Perform Arithmetic operations on rows and columns 
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e.g.1 

import pandas as pd 
data = [1,2,3,4,5] 
df = pd.DataFrame(data) 

print df 

     0 
0    1 
1    2 
2    3 
3    4 
4    5 
 
e.g. 2 

import pandas as pd 
data = [['Alex',10],['Bob',12],['Clarke',13]] 
df = pd.DataFrame(data,columns=['Name','Age'],dtype=float) 

print df 

   Name     Age 
0     Alex     10.0 
1     Bob      12.0 
2     Clarke   13.0 

 
Importing data files using pandas 
Pandas provides the means for datafiles to be imported to the python environment. External 
files in any format (.csv, .xls, .txt, .pdf, etc.) can be imported using pandas.  
e.g. 1: .csv file can be imported by read_csv() function 
data = pd.read_csv('/content/sample_data/california_housing_test.csv') 
e.g. 2: .xls file can be imported by read_excel() function 
data = pd.read_excel('/content/sample_data/shishamharvesteddata.xls') 
 

Measure of central tendency 
Mean, Median and Mode of the dataset can be calculated using mean(), median() and 
mode() functions available in Pandas 
e.g.:  
## mean 
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data[].mean() 
## median 
data[].median() 
## mode 
data[].mode() 

Description statistics 
Description statistics can be calculated by describe()function available in Pandas 
e.g.:  
data[['dbhcm','Branchkg','Stemkg']].describe() 
output: 

Boxplot 
The boxplots can be drawn with the help of pyplot.boxplot function available with 
matplotlib. 
e.g.: 
## Boxplot  
from matplotlib import pyplot as plt 
fig = plt.figure(figsize=(10,8)) 
plt.boxplot(data['htm']) 
plt.title('Boxplot for htm') 
plt.show() 
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Output:  

References:  
1. https://colab.research.google.com/github/tensorflow/examples/blob/master/courses/

udacity_intro_to_tensorflow_for_deep_learning/l01c01_introduction_to_colab_and
_python.ipynb#scrollTo=F8YVA_634OFk 

2. https://docs.python.org/3/tutorial/ 
3. https://numpy.org/ 
4. https://pandas.pydata.org/ 
5. https://www.guru99.com/python-tutorials.html 
6. https://www.programiz.com/python-programming 
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1. Introduction 
SPSS is a widely used software package for statistical analysis in social science. The 
original SPSS manual (Nie et al., 1970) has been described as one of "sociology's most 
influential books" for allowing ordinary researchers to do their own statistical analysis. 
Originally it is an acronym of Statistical Package for the Social Science but now it stands 
for Statistical Product and Service Solutions. The current versions (2015) are officially 
named IBM SPSS Statistics. Long produced by SPSS Inc., it was acquired by IBM in 
2009. During 2009 and 2010 it was called PASW (Predictive Analytics Software) 
Statistics. It is one of the most popular statistical packages which can perform highly 
complex data manipulation and analysis with rather simple instructions. This package of 
programs is available for both personal as well as mainframe computers. SPSS package 
consists of a set of software tools for data entry, data management, statistical analysis and 
presentation. SPSS integrates complex data and file management, statistical analysis and 
reporting functions. SPSS can take data from almost any type of file and use them to 
generate tabulated reports, charts, and plots of distributions and trends, descriptive 
statistics, and complex statistical analyses. 
Some versions of SPSS released in recent years are 

• SPSS Statistics 17.0.1 - December 2008 
• PASW Statistics 17.0.3 - September 2009 
• PASW Statistics 18.0, 18.0.1, 18.0.2, 18.0.3 
• IBM SPSS Statistics 19.0 - August 2010 
• IBM SPSS Statistics 19.0.1, 20.0, 20.0.1, 21.0 

Companion products in the same family are used for survey authoring and deployment 
(IBM SPSS Data Collection), data mining (IBM SPSS Modeler), text analytics, and 
collaboration and deployment (batch and automated scoring services). Purpose of this 
chapter is to introduce the basic features of the SPSS and also to provide some basic 
statistical analysis using this software.  
 

2. Key features of SPSS 
Some of the key features of SPSS are 

− It is easy to learn and use with its pull-down menu features 
− It includes a full range of data management system and editing tools 
− It offers comprehensive range of plotting, reporting and presentation features. 
− It provides in-depth statistical analysis capabilities 

In addition to statistical analysis, data management (case selection, file reshaping, 
creating derived data) and data documentation (a metadata dictionary stored in the data 
file) are features of the base software. There are varieties of statistics included in the base 
software. Some of the important statistics are: 
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Descriptive statistics: Cross tabulation, Frequencies, Descriptives, Explore, 
Descriptive Ratio Statistics etc. 
Bivariate statistics: Means, t-test, ANOVA, Correlation (bivariate, partial, 
distances), Nonparametric tests etc. 
Prediction for numerical outcomes: Linear regression, Multiple Regression 
Prediction for identifying groups: Factor analysis, Cluster analysis (two-step, K-
means, hierarchical), Discriminant analysis etc. 
 

3. Basic features of SPSS  
SPSS makes statistical analysis manageable for the naive user and convenient for the 
experts. There are a number of different types of windows in SPSS. The data editor offers 
a simple and efficient spreadsheet-like facility for entering data and browsing the working 
data file.  
Data Editor: This graphical user interface displays the contents of the data file. One can 
create new data files or modify existing ones. The Data Editor window opens 
automatically when an SPSS session is started. This editor has two views which can be 
toggled by clicking on one of the two tabs in the bottom left of the SPSS window. 
 Data view: Displays the actual data values or defined value labels. The 'Data 

View' shows a spreadsheet view of the cases (rows) and variables (columns). 
Unlike spreadsheets, the data cells can only contain numbers or text, and formulas 
cannot be stored in these cells. One can modify data values in the Data view in 
many ways like change data values; cut, copy and paste data values; add and 
delete cases; 

 Variable view: Displays variable definition information contained or metadata 
dictionary where each row represents a variable and shows the variable name, 
variable label, value label(s), print width, measurement type, and a variety of other 
characteristics. One can modify variable properties in the Variable view for 
example, add and delete variables, change the order of variables etc. 

Extension of the saved data file will be “.sav”. 

 
Viewer: All results, tables, and charts performed by different statistical analysis are 
displayed in the Viewer. Extension of the saved output file will be “.spv”. One can use 
the Viewer to browse results, show or hide selected tables and charts, change the display 
order of results by moving selected items or move items between the Viewer and other 
applications. The output presented in Viewer can be edited and saved for later use. A 
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Viewer window opens automatically the first time a procedure is run that generates 
output. The Viewer is divided into two panes: 
 The left pane contains an outline view of the contents. One can click an item in 

the outline to go directly to the corresponding table or chart. 
 The right pane contains statistical tables, charts, and text output. 

 
Syntax Editor: The pull-down menu interface generates command syntax: this can be 
displayed in the output. These command syntax can also be pasted into a syntax file in a 
syntax window using the "paste" button present in each menu. One can then edit the 
command syntax to utilize special features of SPSS not available through dialog boxes. 
These commands can be saved in a file for use in subsequent SPSS sessions. Extension of 
the saved syntax file will be “.sps”. Command syntax programming has the benefits of 
reproducibility, simplifying repetitive tasks, and handling complex data manipulations 
and analyses.  

 
Pivot Table Editor: The results from most statistical procedures are displayed in pivot 
tables. These pivot tables outputs can be modified in many ways with pivot table editor. 
One can edit text, swap data in rows and columns, create multidimensional tables, and 
selectively hide and show results. Changing the layout of the table does not affect the 
results. Instead, it's a way to display information in a different or more desirable manner. 
Text Output Editor: Text output not displayed in pivot tables can be modified with the 
Text Output Editor. One can edit the output and change font characteristics (type, style, 
colour, size). 
Chart Editor: High-resolution charts and plots can be modified in chart windows. One 
can change the colours, select different type of fonts and sizes, switch the horizontal and 
vertical axes, rotate 3-D scatterplots, and even change the chart type.  
Script Window: It provides the opportunity to write full-blown programs, in a BASIC-
like language. It is a text editor for syntax composition. Extension of the saved script file 
will be “.sbs” 
Many features of SPSS Statistics are accessible via pull-down menus or can be 
programmed with a proprietary 4GL command syntax language. Many of the tasks that 
are to be performed with SPSS start with menu selections. Each window has its own 

http://en.wikipedia.org/wiki/4GL
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menu bar with menu selections appropriate for that window type. The menu options 
available in SPSS are 

 
Most menu selections open dialog boxes. These dialog boxes can be used to select 
variables and various options for analysis. The main dialog box usually contains the 
minimum information required to run a procedure. Additional specifications are made in 
sub-dialog boxes. All these above mentioned options have further sub-options. The three 
dots after an option term (...) on a drop-down menu, such as Define Variable... option in 
Data option, signifies that a dialog box will appear when this option is chosen. To cancel 
a dialog box, select the Cancel button in the dialog box. A right-facing arrowhead after 
an option term indicates that a further submenu will appear to the right of the drop-down 
menu. An option with neither of these signs means that there are no further dropdown 
menus to select. There are five standard command push buttons in most dialog boxes. 
OK: It runs the procedure. After the variables and additional specifications are selected, 

click OK to run the procedure. 
Paste: It generates command syntax from the dialog box selections and pastes the syntax 

into a syntax window. 
Reset: It deselects any variables in the selected variable list and resets all specifications in 

the dialog box. 
Cancel: It cancels any changes in the dialog box settings since the last time it was opened 

and closes the dialog box. 
Help: It contains information about the current dialog box. 

 
Basic Steps in Data Analysis using SPSS 
• Get data into SPSS. There are several ways to get data in the SPSS. One can open a 

previously saved SPSS data file, read a spreadsheet, database, or text data file, or enter 
data directly in the Data Editor. 

• Select a procedure. Select an appropriate procedure from the menus in order to perform 
appropriate analysis on the data file and calculate statistics or create charts. 

• Select the variables for the analysis. The variables in the data file are displayed in a 
dialog box for the procedure. 

• Run the procedure. Results are displayed in the Viewer. 
 

4. Entering and Editing Data 
The easiest way of entering data in SPSS is to type it directly into the matrix of columns 
and numbered rows in the Data Editor window. The columns represent variables and the 
rows represent cases. The variables can be defined in the variable view.  
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To be able to retrieve a file, the file must be saved with a proper name. The default 
extension name for saving files is sav. To save this file on hard disk, we carry out the 
following sequence: 

File →Save As... [opens Save Data As dialog box]→box under File Name: 
delete the asterisk and type file name →OK 

The output file can also be printed and saved. The extension name for output file is .spo. 
 
To retrieve this file, use the following procedure: 

File→Open→Data...[opens the Open Data File dialog box] →choose drive from 
options listed →type name under File Name:  → OK 

 

5. Statistical Procedures 
After entering the data set in Data Editor or reading an ASCII data file, we are now 
ready to analyse it. The Analyse option has the following sub options: 
 Reports, Descriptive Statistics, Tables, Compare means, General Linear 
model, Mixed Models, Correlate, Regression, Loglinear, Neural Networks, 
Classify, Dimension Reduction, Scale, Non parametric tests, Forecasting, 
Time Series, Survival, Multiple response, Missing value analysis, Multiple 
imputation, Complex samples, Quality control, ROC curve. 

 
Help topics available at IBM SPSS Statistics is so enriched that it helps naive users to 
manage their desired statistical analysis efficiently. 

 
Some of the important statistical analysis options are described in detail as follows  

5.1. Descriptive Statistics:  
This submenu provides techniques for summarising data with statistics, charts, and 
reports. This is most useful for providing useful descriptive statistics for different types of 
dataset. There various sub-sub menus under this submenu.  
Frequencies option helps in generating information about the relative frequency of the 
occurrence of each category of a variable. To compute summary statistics for each of 
several groups of cases, Means procedure or the Explore procedure can be used.   
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Descriptives option carry out statistical analysis that summarize the values of a variable 
like the measures of central tendency, measures of dispersion, skewness, kurtosis etc.  
Explore produces and displays summary statistics for all cases or separately for groups of 
cases. Several other additional features like boxplots, stem-and leaf plots, histograms, 
tests of normality, robust estimates of location, frequency tables and other descriptive 
statistics and plots can also be obtained using this submenu. 
Crosstabs is used to carry out cross-tabulation in order to count the number of cases that 
have different combinations of values of two or more variables, and to calculate summary 
statistics and tests.  
P-P plots provides the cumulative proportions of a variable's distribution against the 
cumulative proportions of the normal distribution. 
Q-Q plots provide the quantiles of a variable's distribution against the quantiles of the 
normal distribution. 

5.2. Compare Means:  
This submenu provides techniques for testing differences among two or more means for 
both independent and related samples. 
Means computes summary statistics for a variable when the cases are subdivided into 
groups based on their values. 
One-sample t test procedure tests whether the mean of a single variable differs from a 
specified constant.  
Independent sample t test is used to test if two unrelated samples come from 
populations with the same mean. The observations should be from two unrelated groups, 
and for testing, the mean must be an appropriate summary measure for the variable to be 
compared in the two groups. For more than two independent groups, the One-way 
ANOVA option could be used. 
Paired sample t test is used to compare the means of the same subjects in two conditions 
or at two points in time i.e. to compare subjects who had been matched to be similar in 
certain respects and then to test if two related samples come from populations with the 
same mean. The related, or paired, samples often result from an experiment in which the 
same person is observed before and after an intervention. If the distribution of the 
differences of the values between the members of a pair is markedly non-normal you 
should consider one of the nonparametric tests. 
One-way ANOVA is used to test that several independent groups come from populations 
with the same mean. To see which groups are significantly different from each other, 
multiple comparison procedures can be used through Post Hoc Multiple Comparison 
option which consist of the options like Least-significant difference, Duncan’s multiple 
range test, Scheffe etc. The data obtained using completely randomised design can be 
analysed through this option. 

5.3. General Linear Model: 
This submenu provides techniques for testing univariate and multivariate Analysis of 
Variance models, including repeated measures.  
Univariate sub-option could be used to analyse the experimental designs like Completely 
randomised design, Randomised block design, Latin square design, Designs for factorial 
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experiments etc. The covariance analysis can also be performed and alternate methods for 
partitioning sums of squares can be selected.  
Multivariate analyses analysis of variance and analysis of covariance designs when there 
are two or more correlated dependent variables. Multivariate analysis of variance is used 
to test hypotheses about the relationship between a set of interrelated dependent variables 
and one or more factor or grouping variables. For example, one can test whether verbal 
and mathematical test scores are related to instructional method used, sex of the subject, 
and the interaction of method and sex. This procedure should be used only if there are 
several dependent variables which are related to each other. For a single dependent 
variable or unrelated dependent variables, the Univariate ANOVA procedures can be 
adopted.  
Repeated Measures is used to test hypotheses about the means of a dependent variable 
when the same dependent variable is measured on more than one occasion for each 
subject. Subjects can also be classified into mutually exclusive groups, such as males or 
females, or type of job held. Then you can test hypotheses about the effects of the 
between-subject variables and the within-subject variables, as well as their interactions. 

5.4. Correlate:  
This submenu provides measures of association for two or more variables measured at the 
interval level. 
Bivariate calculates matrices of Pearson product-moment correlations, and of Kendall 
and Spearman nonparametric correlations, with significance levels and optional univariate 
statistics. The correlation coefficient is used to quantify the strength of the linear 
relationship between two variables. The Pearson correlation coefficient should be used 
only for data measured at the interval or ratio level. Spearman and Kendall correlation 
coefficients are nonparametric measures which are particularly useful when the data 
contain outliers or when the distribution of the variables is markedly non-normal.  
Partial calculates partial correlation coefficients that describe the relationship between 
two variables, while adjusting for the effects of one or more additional variables. If the 
value of a dependent variable from a set of independent variables is to be predicted then 
the Linear Regression procedure may be used. If there are no control variables then the 
Bivariate Correlations procedure can be adopted.  
Distances calculates statistics measuring either similarities or dissimilarities (distances), 
either between pairs of variables or between pairs of cases. These similarity or distance 
measures can then be used with other procedures, such as factor analysis, cluster analysis, 
or multidimensional scaling, to help analyze complex datasets. Dissimilarity (distance) 
measures for interval data are Euclidean distance, squared Euclidean distance, 
Chebychev, block, Minkowski, or customized; for count data, chi-square or phi-square; 
for binary data, Euclidean distance, squared Euclidean distance, size difference, pattern 
difference, variance, shape, or Lance and Williams. Similarity measures for interval data 
are Pearson correlation or cosine; for binary data, Russel and Rao, simple matching, 
Jaccard, etc. 

5.5. Regression: 
This submenu provides a variety of regression techniques, including linear, logistic, 
nonlinear, weighted, and two stage least squares regression. 
Linear is used to examine the relationship between a dependent variable and a set of 
independent variables. If the dependent variable is dichotomous, then the logistic 
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regression procedure should be used. If the dependent variable is censored, such as 
survival time after surgery, use the Life Tables, Kaplan-Meier, or proportional hazards 
procedure. 
Curve Estimation produces curve estimation regression statistics and related plots for 11 
different curve estimation regression models. A separate model is produced for each 
dependent variable. One can also save predicted values, residuals, and prediction intervals 
as new variables. 
Logistic estimates regression models in which the dependent variable is dichotomous. If 
the dependent variable has more than two categories, use the Discriminant procedure to 
identify variables which are useful for assigning the cases to the various groups. If the 
dependent variable is continuous, use the Linear Regression procedure to predict the 
values of the dependent variable from a set of independent variables. In recent versions 
there are two options Binary Logistic as well as Multinomial Logistic. 
Probit performs probit analysis which is used to measure the relationship between a 
response proportion and the strength of a stimulus. For example, the probit procedure can 
be used to examine the relationship between the proportion of plants dying and the 
strength of the pesticide applied or to examine the relationship between the proportion of 
people buying a product and the magnitude of the incentive offered. The Probit procedure 
should be used only if the response is dichotomous buy/not buy, alive/dead and several 
groups of subjects are exposed to different levels of some stimulus.  
Nonlinear estimates nonlinear regression models, including models in which parameters 
are constrained. The nonlinear regression procedure can be used if one knows the 
equation whose parameters are to be estimated, and the equation cannot be written as the 
sum of parameters times some function of the independent variables. In nonlinear 
regression the parameter estimates are obtained iteratively. If the function is linear, or can 
be transformed to a linear function, then the Linear Regression procedure should be used. 
Weight Estimation estimates a linear regression model with differential weights 
representing the precision of observations. This command is in the Professional Statistics 
option. If the variance of the dependent variable is not constant for all of the values of the 
independent variable, weights which are inversely proportional to the variance of the 
dependent variable can be incorporated into the analysis. This results in a better solution. 
The Weight Estimation procedure can also be used to estimate the weights when the 
variance of the dependent variable is related to the values of an independent variable.  
2-Stage Least Squares performs two-stage least squares regression for models in which 
the error term is related to the predictors. This command is in the Professional Statistics 
option. For example, if you want to model the demand for a product as a function of 
price, advertising expenses, cost of the materials, and some economic indicators, you may 
find that the error term of the model is correlated with one or more of the independent 
variables. Two-stage least squares allows you to estimate such a model. 

5.6. Classify: 
This submenu provides cluster and discriminant analysis. 
Two Step Cluster performs Two Step Cluster Analysis procedure which is an 
exploratory data analysis tool designed to reveal natural clustering within a dataset that 
would otherwise not be apparent. The algorithm employed by this procedure has several 
desirable features that differentiate it from traditional clustering techniques. The Log-
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likelihood and Euclidean Distance Measures are used as the similarity measure between 
two clusters. 
K-means Cluster performs cluster analysis using an algorithm that can handle large 
numbers of cases, but that requires you to specify the number of clusters. The goal of 
cluster analysis is to identify relatively homogeneous groups of cases based on selected 
characteristics. If the number of clusters to be formed is not known, then Hierarchical 
Cluster procedure can be used. If the observations are in known groups and one wants to 
predict group membership based on a set of independent variables, then the Discriminant 
procedure can be used. 
Hierarchical Cluster combines cases into clusters hierarchically, using a memory-
intensive algorithm that allows you to examine many different solutions easily. 
Discriminant is used to classify cases into one of several known groups on the basis of 
various characteristics. To use the Discriminant procedure the dependent variable must 
have a limited number of distinct categories. Independent variables that are nominal must 
be recoded to dummy or contrast variables. If the dependent variable has two categories, 
Logistic Regression can be used. If the dependent variable is continuous one may use 
Linear Regression. 
Nearest Neighbor performs Nearest Neighbor Analysis for classifying cases based on 
their similarity to other cases. In machine learning, it was developed as a way to 
recognize patterns of data without requiring an exact match to any stored patterns, or 
cases. Similar cases are near each other and dissimilar cases are distant from each other. 
Thus, the distance between two cases is a measure of their dissimilarity. 

5.7. Dimension Reduction: 
This submenu provides factor analysis, correspondence analysis, and optimal scaling. 
Factor is used to identify factors that explain the correlations among a set of variables. 
Factor analysis is often used to summarize a large number of variables with a smaller 
number of derived variables, called factors. 
Correspondence Analysis analyses correspondence tables (such as cross-tabulations) to 
best measure the distances between categories or between variables. This command is in 
the Categories option. 
Distances computes many different measures of similarity, dissimilarity or distance. 
Many different measures can be used to quantify how much alike or how different two 
cases or variables are. Similarity measures are constructed so that large values indicate 
much similarity and small values indicate little similarity. Dissimilarity measures estimate 
the distance or unlikeness of two cases. A large dissimilarity value tells that two cases or 
variables are far apart. In order to decide which similarity or dissimilarity measure to use, 
one must consider the characteristics of the data.  

15.8. Nonparametric Tests:  
This submenu provides nonparametric tests for one sample, or for two and more paired or 
independent samples.  
Chi-Square is used to test hypotheses about the relative proportion of cases falling into 
several mutually exclusive groups. For example, if one wants to test the hypotheses that 
people are equally likely to buy six different brands of cereals, one can count the number 
buying each of the six brands. Based on the six observed counts Chi-Square procedure 
could be used to test the hypothesis that all six cereals are equally likely to be bought. The 
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expected proportions in each of the categories don't have to be equal. The hypothetical 
proportions to be tested should be specified. 
Binomial is used to test the hypothesis that a variable comes from a binomial population 
with a specified probability of an event occurring. The variable can have only two values. 
For example, to test that the probability of an item on the assembly line is defective is one 
out of ten (p=0.1), take a sample of 300 items and record whether each is defective or not. 
Then use the binomial procedure to test the hypothesis of interest. 
Runs is used to test whether the two values of a dichotomous variable occur in a random 
sequence. The runs test is appropriate only when the order of cases in the data file is 
meaningful. 
1-Sample K-S is used to compare the observed frequencies of the values of an ordinal 
variable, such as rated quality of work, against some specified theoretical distribution. It 
determines the statistical significance of the largest difference between them. In SPSS, the 
theoretical distribution can be Normal, Uniform or Poisson. Alternative tests for 
normality are available in the Explore procedure, in the Summarize submenu. The P-P 
and Q-Q plots in the Graphs menu can also be used to examine the assumption of 
normality. 
2-Independent Samples is used to compare the distribution of a variable between two 
non-related groups. Only limited assumptions are needed about the distributions from 
which the sample are selected. The Mann-Whitney U test is an alternative to the two 
sample t-test. The actual values of the data are replaced by ranks. The Kolmogorov-
Smirnov test is based on the differences between the observed cumulative distributions of 
the two groups. The Wald-Woflowitz runs tests sorts the data values from smallest to 
largest and then performs a runs test on the group’s numbers. The Moses Test of Extreme 
Reaction is used to test for differences in range between two groups. 
K-Independent Samples is used to compare the distribution of a variable between two or 
more groups. Only limited assumptions are needed about the distributions from which the 
samples are selected. The Kruskal-Wallis test is an alternative to one-way analysis of 
variance, with the actual values of the data replaced by ranks. The Median tests counts the 
number of cases in each group that are above and below the combined median, and then 
performs a chi-square test. 
2 Related Samples is used to compare the distribution of two related variables. Only 
limited assumptions are needed about the distributions from which the samples are 
selected. The Wilcoxon and Sign tests are nonparametric alternative to the paired samples 
t-test. The Wilcoxon test is more powerful than the Sign test. McNemar's test is used to 
determine changes in proportions for related samples. It is often used for "before and 
after" experimental designs when the dependent variable is dichotomous.  
K Related Samples is used to compare the distribution of two or more related variables. 
Only limited assumptions are needed about the distributions from which the samples are 
selected. The Friedman test is a nonparametric alternative to a single-factor repeated 
measures analysis of variance. You can use it when the same measurement is obtained on 
several occasions for a subject. For example, the Friedman test can be used to compare 
consumer satisfaction of 5 products when each person is asked to rate each of the 
products on a scale. Cochran's Q test can be used to test whether several dichotomous 
variables have the same mean.  
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5.9. Forecasting: 
This submenu provides create models, seasonal decomposition, spectral analysis, 
autocorrelations, cross-correlations etc. 
Autocorrelations calculates and plots the autocorrelation function (ACF) and partial 
autocorrelation function of one or more series to any specified number of lags, displaying 
the Box-Ljung statistic at each lag to test the overall hypothesis that the ACF is zero at all 
lags. 
Cross-correlations calculates and plots the cross-correlation function of two or more 
series for positive, negative, and zero lags. 
Spectral analysis calculates and plots univariate or bivariate periodograms and spectral 
density functions, which express variation in a time series (or covariation in two time 
series) as the sum of a series of sinusoidal components. It can optionally save various 
components of the frequency analysis as new series. 

15.10. Complex Samples: 
This submenu provides procedures for Sampling from Complex Designs. The Sampling 
Wizard guides through the steps for creating, modifying, or executing a sampling plan 
file. Before using the Wizard, one should have a well-defined target population, a list of 
sampling units, and an appropriate sample design in mind. 

18. Graphs 
The Chart Builder available in Graph menu allows to build charts from predefined gallery 
charts or from the individual parts (for example, axes and bars). Build a chart by dragging 
and dropping the gallery charts or basic elements onto the canvas, which is the large area 
to the right of the Variables list in the Chart Builder dialog box.  
Legacy Dialogs submenu provides following graph options 
Bar generates a simple, clustered, or stacked bar chart of the data. 
3-D Bar Charts generates bar graph in 3-dimensional axis. 
Line generates a simple or multiple line chart of the data. 
Area generates a simple or stacked area chart of the data. 
Pie generates a simple pie chart or a composite bar chart from the data. 
High-Low plots pairs or triples of values, for example high, low, and closing prices. 
Boxplot generates boxplots showing the median, interquartile range, outliers, and 
extreme cases of individual variables. 
Error Bar Charts plot the confidence intervals, standard errors, or standard deviations of 
individual variables. 
Scatter/dot generates a simple or overlay scatterplot, a scatterplot matrix, or a 3-D 
scatterplot from the data. 
Histogram generates a histogram showing the distribution of an individual variable. 
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19. Exercises 
Exercise 1. The following data was collected through a pilot sample survey on Hybrid 
Jowar crop on yield and biometrical characters. The biometrical characters were average 
Plant Population (PP), average Plant Height (PH), average Number of Green Leaves 
(NGL) and Yield (kg/plot). 
 

S.No. PP PH NGL Yield S.No. PP PH NGL Yield 
1 142.00 0.525 8.2 2.470 24 55.55 0.265 5.0 0.430 
2 143.00 0.640 9.5 4.760 25 88.44 0.980 5.0 4.080 
3 107.00 0.660 9.3 3.310 26 99.55 0.645 9.6 2.830 
4 78.00 0.660 7.5 1.970 27 63.99 0.635 5.6 2.570 
5 100.00 0.460 5.9 1.340 28 101.77 0.290 8.2 7.420 
6 86.50 0.345 6.4 1.140 29 138.66 0.720 9.9 2.620 
7 103.50 0.860 6.4 1.500 30 90.22 0.630 8.4 2.000 
8 155.99 0.330 7.5 2.030 31 76.92 1.250 7.3 1.990 
9 80.88 0.285 8.4 2.540 32 126.22 0.580 6.9 1.360 
10 109.77 0.590 10.6 4.900 33 80.36 0.605 6.8 0.680 
11 61.77 0.265 8.3 2.910 34 150.23 1.190 8.8 5.360 
12 79.11 0.660 11.6 2.760 35 56.50 0.355 9.7 2.120 
13 155.99 0.420 8.1 0.590 36 136.00 0.590 10.2 4.160 
14 61.81 0.340 9.4 0.840 37 144.50 0.610 9.8 3.120 
15 74.50 0.630 8.4 3.870 38 157.33 0.605 8.8 2.070 
16 97.00 0.705 7.2 4.470 39 91.99 0.380 7.7 1.170 
17 93.14 0.680 6.4 3.310 40 121.50 0.550 7.7 3.620 
18 37.43 0.665 8.4 1.570 41 64.50 0.320 5.7 0.670 
19 36.44 0.275 7.4 0.530 42 116.00 0.455 6.8 3.050 
20 51.00 0.280 7.4 1.150 43 77.50 0.720 11.8 1.700 
21 104.00 0.280 9.8 1.080 44 70.43 0.625 10.0 1.550 
22 49.00 0.490 4.8 1.830 45 133.77 0.535 9.3 3.280 
23 54.66 0.385 5.5 0.760 46 89.99 0.490 9.8 2.690 

Source: Design Resources Server. ICAR-Indian Agricultural Statistics Research Institute, 
New Delhi 110 012, India. www.iasri.res.in/design (accessed lastly on <05-05-2015>). 

1. Find mean, standard deviation, minimum and maximum values of all the 
characters. 

2. Find correlation coefficient between each pair of the variables. 
3. Give a scatter plot of the variable PP with dependent variable yield. 
4. Fit a multiple linear regression equation where yield is dependent variable 

whereas all other characters as independent variables. 
At first enter the entire data in the data editor as given below, 
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There are several ways to answer the Q no. 1in SPSS. Commands following first way is 
as follows, 

Analyze → Descriptive Statistics → Descriptives…→ Put PP, PH, NGL, YLD in 
the variables list→ Choose appropriate options from Options tab→Press 
Continue → Press Ok 

 
Output: 

 
Another way: 

Analyze → Descriptive Statistics → Explore…→ Put PP, PH, NGL, YLD in the 
Dependent list→ Choose both Statistics and plot→ Press Ok 
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Output: 

 
 To answer Q no. 2 follow the following steps 

Analyze → Correlate → Bivariate→ Put PP, PH, NGL, YLD in the Valiables 
list→ Choose Pearson’s correlation coefficient→ Press Ok 

 
Output: 
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To give the scatter plot of the variable PP with dependent variable yield use following 
steps: 

Graphs → Legacy dialogs→ Scatterplot→ Put PP at Y axis and YLD at X axis→ Ok 

 
 
 

Output: 

 
To fit a multiple linear regression equation taking yield as dependent variable and all 
other characters as independent variables perform following steps 

Analyze → Regression → Linear → Put Yld in Dependent variable and PP, PH, 
NGL in independent variable list → Press Ok 
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Output: 

 
 
Exercise 2. Practical exercise using SPSS for Survey Data 
In this section, a practical exercise is provided which has analyzed using a popular 
statistical software, SPSS. For illustration purpose, we are going to use “Employee data” 
from the Sample folder of SPSS available at C:\Program Files 
(x86)\IBM\SPSS\Statistics\20\Samples\English. In addition a new variable “Company” 
has been added to the dataset which is having values from 1,2,…,10. Thus, there are 400 
data-points clustered into 10 clusters each of size 40 usu. This dataset has been 
considered as population used for further illustration (available at 
https://www.dropbox.com/s/rxxccpuk3iieepa/Employee%20data.sav?dl=0). 
The Sampling Wizard guides through the steps for creating, modifying, or executing a 
sampling plan file. Before using the Wizard, one should have a well-defined target 
population, a list of sampling units, and an appropriate sample design in mind. The 
Complex Samples option allows to select a sample according to a complex design and 
incorporate the design specifications into the data analysis. 

Creating a New Sample Plan 
1. From the menus choose 

Analyze → Complex Samples → Select a Sample....  

 
2. Select Design a sample and choose a plan filename to save the sample plan. 

https://www.dropbox.com/s/rxxccpuk3iieepa/Employee%20data.sav?dl=0
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3. Click Next to continue through the Wizard. 
4. Optionally, in the Design Variables step, one can define strata, clusters, and input 

sample weights. Select the variable “Company” as cluster. Then, click Next. 
5. Optionally, in the Sampling Method step, one can choose a method for selecting 
items. 

o If one select PPS Brewer or PPS Murthy, one can click Finish to draw the 
sample. Otherwise, click Next. 

6. In the Sample Size step, specify the number or proportion of units to sample. 
7. Optionally, in further steps one can: 

o Choose output variables to save. 
o Add a second or third stage to the design. 
o Set various selection options, including which stages to draw samples from, 

the random number seed, and whether to treat user-missing values as valid 
values of design variables. 

o Choose where to save output data. 
8. Now click Finish to draw the sample. 

 
 
Developed Sample Plan can be used for furthermore random sample selection as follows 

Analyze → Complex Samples → Draw the Sample....  
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After selection of Sample next step is to prepare the sample for analysis. The Analysis 
Preparation Wizard guides through the steps for creating or modifying an analysis plan 
for use with the various Complex Samples analysis procedures. Before using the Wizard, 
one should have a sample drawn according to a complex design. 

Creating a New Analysis Plan 
1.  From the menus choose: 

Analyze → Complex Samples → Prepare for Analysis... 
2. Select Create a plan file, and choose a plan filename to save the analysis plan. 
3. Click Next to continue through the Wizard. 
4. Specify the variable containing sample weights in the Design Variables step, 

optionally defining strata and clusters. 
5. Optionally, in further steps one can: 

a. Select the method for estimating standard errors in the Estimation Method 
step. 

b. Specify the number of units sampled or the inclusion probability per unit in 
the Size step. 

c. Add a second or third stage to the design. 
6. Now click Finish to save the plan. 

 
Now using this Analysis Plan file one generates several types of outputs available in the 
Complex Samples option like 



 
 

• Frequencies 

• Descriptive 

• Crosstabs 

• Ratios 

• General Linear Model 

• Logistic Regression 

• Ordinal Regression 

• Cox Regression 

 
 
 

Results from the Descriptive options using the “Current Salary” is given by 

 
For selection of samples by Multistage sampling design one can edit the existing Sample 
Plan for cluster sampling or prepare new sampling plan according to Multistage sampling.  
At the seventh step of the earliar shown “Creating a New Sample Plan”, one should 
select “Yes, add stage 2 now” when the question “Do you want to add Stage 2” pops up in 
the sampling wizard as shown below: 

 
Then define “sample size” for the stage 2 and path where to save the output file. An 
output file is given below when, first, 2 clusters are selected by SRSWOR and, the, within 
each selected cluster 10 units are selected by SRSWOR. 
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For analysis as per two stage sampling design, New Analysis Plan shall be created and 
further analysis of the sample shall be carried out. 
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1. INTRODUCTION 
SPSS is a widely used software package for statistical analysis in social science. SPSS is 
capable of handling large amounts of data and can perform all of the analyses covered in 
the text and much more. The current versions (2015) are officially named IBM SPSS 
Statistics. Long produced by SPSS Inc., it was acquired by IBM in 2009. During 2009 and 
2010 it was called PASW (Predictive Analytics Software) Statistics. It is one of the most 
popular statistical packages which can perform highly complex data manipulation and 
analysis with rather simple instructions. SPSS package consists of a set of software tools for 
data entry, data management, statistical analysis and presentation. SPSS integrates complex 
data and file management, statistical analysis and reporting functions. Purpose of this 
chapter is to introduce the basic features of the SPSS for its application in survey data 
analysis. 
When surveying a population, choosing a simple random sample may not be the best 
approach. A probability sample that uses strategies like stratification, clustering, and 
multistage sampling has many advantages over simple random sample under certain 
conditions like to increase precision, decrease cost, ensuring sub-populations are included 
etc. Under these situations, it is recommended to use techniques dedicated to producing 
correct estimates for complex sample data.  
IBM SPSS Complex Samples can compute statistics and standard errors from complex 
sample designs by incorporating the designs into survey analysis. It offers planning tools 
such as stratified, clustered or multistage sampling. From the planning stage and sampling 
through the analysis stage, SPSS Complex Samples allows one to select a sample according 
to a complex design and incorporate the design specifications into the data analysis making 
it easy to obtain accurate and reliable results. SPSS Complex Samples considers up to three 
states when analyzing data from a multistage design therefore multistage analysis up to three 
stages is possible through it. 
 

2. STATISTICAL PROCEDURE FOR SURVEY DATA ANALYSIS IN SPSS 
Complex Samples submenu under the Analyze menu provides procedures for Sampling 
from Complex Designs and incorporate the design specifications into the data analysis, 
thus ensuring the results are valid. The Sampling Wizard guides through the steps for 
creating, modifying, or executing a sampling plan file. Before using the Wizard, one should 
have a well-defined target population, a list of sampling units, and an appropriate sample 
design in mind. 
 

3. PROPERTIES OF COMPLEX SAMPLES 
A complex sample can differ from a simple random sample in many ways. In a simple 
random sample, individual sampling units are selected at random with equal probability 
and without replacement (WOR) directly from the entire population. By contrast, a given 
complex sample can have some or all of the following features: 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Social_science
http://en.wikipedia.org/wiki/SPSS_Inc.
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3.1 STRATIFICATION 
Stratified sampling involves selecting samples independently within non-overlapping 
subgroups of the population, or strata. For example, strata may be socioeconomic groups, 
job categories, age groups, or ethnic groups. With  stratification, one can ensure 
adequate sample sizes for subgroups of interest, improve the precision of overall estimates, 
and use different sampling methods from stratum to stratum. 
 
3.2 CLUSTERING 
Cluster sampling involves the selection of groups of sampling units, or clusters. For 
example, clusters may be schools, hospitals, or geographical areas, and sampling units may 
be students, patients, or citizens. Clustering is common in multistage designs and area 
(geographic) samples. 
 
3.3 MULTIPLE STAGES 
In multistage sampling, one selects a first-stage sample based on clusters. Then it creates 
a second-stage sample by drawing subsamples from the selected clusters. If the second-
stage sample is based on sub-clusters, one can then add a third stage to the sample. For 
example, in the first stage of a survey, a sample of cities could be drawn. Then, from the 
selected cities, households could be sampled. 
Finally, from the selected households, individuals could be polled. The Sampling and 
Analysis Preparation wizards allow you to specify three stages in a design. 
 
3.4 NON RANDOM SAMPLING 
When selection at random is difficult to obtain, units can be sampled systematically (at a 
fixed interval) or sequentially. 
 
3.5 UNEQUAL SELECTION PROBABILITIES 
When sampling clusters that contain unequal numbers of units, one can use probability-
proportional-to-size (PPS) sampling to make a cluster’s selection probability equal to the 
proportion of units it contains. PPS sampling can also use more general weighting schemes 
to select units. 
 
3.6 UNRESTRICTED SAMPLING 
Unrestricted sampling selects units with replacement (WR). Thus, an individual unit can 
be selected for the sample more than once. 
 
3.7 SAMPLING WEIGHTS 
Sampling weights are automatically computed while drawing a complex sample and ideally 
correspond to the “frequency” that each sampling unit represents in the target population. 
Therefore, the sum of the weights over the sample should estimate the population size. 
Complex Samples analysis procedures require sampling weights in order to properly 



 

analyze a complex sample. Note that these weights should be used entirely within the 
Complex Samples option and should not be used with other analytical procedures via the 
Weight Cases procedure, which treats weights as case replications. 
 

4. USAGE OF COMPLEX SAMPLES PROCEDURES 
The usage of Complex Samples procedures depends on the particular needs. The primary  
types  of  users  are  those  who:  Plan  and  carry  out  surveys  according  to complex 
designs, possibly analyzing the sample later.  
The first step for SPSS Complex Samples is to use the wizards. If you are creating your 
own samples, use the Sampling Wizard to define the sampling scheme but if using 
datasets that have been sampled, such as those provided by the CDC, DHS surveys etc. 
use the Analysis Preparation Wizard to specify how the samples were defined and how 
to estimate standard errors. Once you create a sample or specify standard errors, you can 
create plans, analyze your data, and produce results. 

 
SPSS complex samples helps to obtain correct estimates such as Population totals, means, 
ratios, standard errors, produce correct confidence intervals and hypothesis tests and 
predict outcomes. 
 
4.1 Complex Samples Plan (CSPLAN)  
Before using the Complex Samples analysis procedures, one may need to use the Analysis 
Preparation Wizard Regardless of which type of user one may be, one need to supply 
design information to Complex Samples procedures. This information is stored in a plan 
file for easy reuse. CSPLAN does not actually extract the sample or analyze data.  
 

PLAN FILES 
A plan file contains complex sample specifications. There are two types of plan files: 
Sampling Plan To sample cases, sample design created by CSPLAN is used as input to 
the CSSELECT (discussed next) procedure. 
Analysis Plan This plan file contains information needed by Complex Samples analysis 
procedures to properly compute variance estimates for a complex sample. The plan 
includes the sample structure, estimation methods for each stage, and references to required 
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variables, such as sample weights. The Analysis Preparation Wizard allows you to create 
and edit analysis plans. To analyze sample data, use an analysis design created by CSPLAN 
as input to the CSDESCRIPTIVES, CSTABULATE, CSGLM, CSLOGISTIC, or 
CSORDINAL procedures. 
There are several advantages to saving your specifications in a plan file, including: 
A surveyor can specify the first stage of a multistage sampling plan and draw first- 
stage units now, collect information on sampling units for the second stage, and then 
modify the sampling plan to include the second stage. 
An analyst who doesn’t have access to the sampling plan file can specify an analysis plan 
and  refer to  that  plan from  each  Complex  Samples  analysis  procedure.    A designer 
of large-scale public use samples can publish the sampling plan file, which simplifies the 
instructions for analysts and avoids the need for each analyst to specify his or her own 
analysis plans. 

Steps for Drawing the Sample and Analysis of Sampled Data 

• START – IBM SPSS for windows 
 

 
 
• Prepare a file from which data to be sampled in SPSS Data Editor 
 or browse your data file by using following procedure: 
 File - Open - Data  
 
 
4.1.1 SAMPLING WIZARD FOR COMPLEX DESIGN 
The sampling wizard is used to create, modify or executing the sampling plan file. We 
should have a well-defined target population, a list of sampling units, and an appropriate 
sample design in mind for carrying this feature in SPSS. 

Creating a New Sample Plan 

1. From the menus choose: 
Analyze > Complex Samples > Select a Sample... 

2. Select Design a sample and choose a plan filename to save the sample plan 
 (demo_cs1) 

 



 

 
 

3. Click Next to continue through the Wizard. 
4. Optionally, in the Design Variables step, you can define strata, clusters, and input sample 

weights. After you define these, click Next. 
 

 
5. Optionally, in the Sampling Method step, you can choose a method by which items can 

be selected like Simple random sampling with or without replacement, probability 
proportional to size etc. If you select PPS Brewer or PPS Murthy, you can click Finish 
to draw the sample. Otherwise, click Next and then: 

6. In the Sample Size step, specify the number or proportion of units to sample. You can 
now click Finish to draw the sample. 
 
4.1.2 Sampling Wizard: Design Variables 
This step allows you to select stratification and clustering variables. In addition, if the 
current sample design is part of a larger sample design, you may have sample weights from 
a previous stage of the larger design. You can specify a numeric variable containing these 
weights in the first stage of the current design. Sample weights are computed automatically 
for subsequent stages of the current design. 
This step has four options viz; 
Stratify By; for stratification, 
Clusters; for clustering variables, 
Input sample weight; when sample weights of each unit are available 
Stage label; for specifying an optional string label for each stage. This is used in the 
output to help identify stage wise information. 
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4.1.3 Sampling Wizard: Sampling Method 
Some sampling types allow one to choose whether to sample with replacement (WR) or 
without replacement (WOR). See the type descriptions for more information. Note that 
some probability-proportional-to-size (PPS) types are available only when clusters 
have been defined and that all PPS types are available only in the first stage of a design. 
Moreover, WR methods are available only in the last stage of a design. 

• Simple Random Sampling Units are selected with equal probability. They can be 
selected with or without replacement. 

• Simple  Systematic  Units  are  selected  at  a  fixed  interval  throughout  the sampling 
frame (or strata, if they have been specified) and extracted without replacement. A 
randomly selected unit within the first interval is chosen as the starting point. 

• Simple Sequential Units are selected sequentially with equal probability and without 
replacement. 

• PPS This is a first-stage method that selects units at random with probability proportional 
to size. Any units can be selected with replacement; only clusters can be sampled without 
replacement. 

• PPS Systematic This is a first-stage method that systematically selects units with 
probability proportional to size. They are selected without replacement. 

• PPS Sequential This is a first-stage method that sequentially selects units with 
probability proportional to cluster size and without replacement. 

• PPS Brewer This is a first-stage method that selects two clusters from each stratum 
with probability proportional to cluster size and without replacement. A cluster variable 
must be specified to use this method. 

• PPS Murthy This is a first-stage method that selects two clusters from each stratum 
with probability proportional to cluster size and without replacement. A cluster variable 
must be specified to use this method. 

• PPS Sampford This is a first-stage method that selects more than two clusters from each 
stratum with probability proportional to cluster size and without replacement. It is an 
extension of Brewer's method. A cluster variable must be specified to use this method. 

• Use  WR  estimation  for  analysis.  By  default,  an  estimation  method  is specified 
in the plan file that is consistent with the selected sampling method. This allows one to use 
with-replacement estimation even if the sampling method implies WOR estimation. This 
option is available only in stage 1. 

 
 Measure of size (mos): If a PPS method is selected, one must specify a measure of size 

that defines the size of each unit. These sizes can be explicitly defined in a variable or they 
can be computed from the  data.  Optionally,  one  can  set  lower  and  upper  bounds  on  
the  MOS, overriding any values found in the MOS variable or computed from the data. 
These options are available only in stage 1. 
 
4.1.4 Sampling Wizard: Sample Size 
This step allows you to specify the number or proportion of units to sample within the current 
stage. The sample size can be fixed or it can vary across strata. For specifying sample size, 
clusters chosen in previous stages can be used to define strata. 

• Units. You can specify an exact sample size or a proportion of units to sample. 
• Value. A single value is applied to all strata. If Counts is selected as the unit metric, 



 

you should enter a positive integer. If Proportions is selected, you should enter a 
non-negative value. Unless sampling with replacement, proportion values should 
also be no greater than 1. 

• Unequal values for strata. Allows you to enter size values on a per-stratum basis via 
the Define Unequal Sizes dialog box. 

• Read values from variable. Allows you to select a numeric variable that contains 
size values for strata. 

 
4.1.5 Sampling Wizard: Output Variables 
This step allows you to choose variables to save when the sample is drawn. 
Population size. The estimated number of units in the population for a given stage. The 
root name for the saved variable is Population Size. 
 
Sample proportion. The sampling rate at a given stage. The root name for the saved 
variable is Sampling Rate_. 
 
Sample size. The number of units drawn at a given stage. The root name for the saved 
variable is Sample Size_. 
 
Sample weight. The inverse of the inclusion probabilities. The root name for the saved 
variable is Sample Weight_. 
 
Some stage wise variables are generated automatically. These include: 
Inclusion probabilities. The proportion of units drawn at a given stage. The root name for 
the saved variable is Inclusion Probability_. 
 
Cumulative weight. The cumulative sample weight over stages before and including the 
current one. The root name for the saved variable is Sample Weight Cumulative_. 
 
Index. Identifies units selected multiple times within a given stage. The root name for the 
saved variable is Index_. 
 
4.1.6 Sampling Wizard: Plan Summary 
This is the last step within each stage, providing a summary of the sample design 
specifications through the current stage. From here, one can either proceed to the next stage 
(creating it, if necessary) or set options for drawing the sample. 
 
4.2 Complex Samples Selection (CSSELECT) 
This step selects complex, probability-based samples from a population. One can also 
control other sampling options, such as the random seed and missing-value handling. It 
chooses units according to a sample design created through the CSPLAN procedure.Write 
sampled units to an external file using an option to keep/drop specified variables. It has 
two sub-parts i.e. DRAW SAMPLE SELECTION OPTIONS and DRAW SAMPLE 
OUTPUT FILES, which are discussed below 

 



 

ANALYSIS OF SURVEY DATA USING SPSS 

29.8 
 

4.2.1 Sampling Wizard: Draw Sample Selection Options  
Draw sample. In addition to choosing whether to draw a sample, one can also choose to 
execute part of the sampling design. Stages must be drawn in order that is, stage 2 cannot 
be drawn unless stage 1 is also drawn. When editing or executing a plan, one cannot 
resample locked stages. 
Seed. This allows one to choose a seed value for random number generation. 
Include user-missing values. This determines whether user-missing values are valid. If 
so, user-missing values are treated as a separate category. 
Data already sorted. If your sample frame is pre-sorted by the values of the stratification 
variables, this option allows one to speed the selection process. 
4.2.2 Sampling Wizard: Draw Sample Output Files 
This step allows one to choose where to direct sampled cases, weight variables, joint 
probabilities, and case selection rules. 
Sample data. These options let one determine where sample output is written. It can be 
added to the active dataset, written to a new dataset, or saved to an external IBM® SPSS® 
Statistics data file. Datasets are available during the current session but are not available in 
subsequent sessions unless one explicitly save them as data files.  
Joint probabilities. These options let one determine where joint probabilities are written. 
They are saved to an external SPSS Statistics data file. Joint probabilities are produced if 
the PPS WOR, PPS Brewer, PPS Sampford, or PPS Murthy method is selected and WR 
estimation is not specified. 
Case selection rules. If one are constructing oner sample one stage at a time, one may want 
to save the case selection rules to a text file. They are useful for constructing the subframe 
for subsequent stages. 
4.2.3 Sampling Wizard: Finish 
This is the final step. One can save the plan file and draw the sample now or paste your 
selections into a syntax window. 
 
4.3 Preparing a Complex Sample for Analysis: The Analysis Preparation Wizard 
After selection of Sample next step is to prepare the sample for analysis. The Analysis 
Preparation Wizard guides one through the steps for creating or modifying an analysis plan 
for use with the various Complex Samples analysis procedures. Before using the Wizard, 
one should have a sample drawn according to a complex design. Creating a new plan is 
most useful when one do not have access to the sampling plan file used to draw the sample. 
If one do have access to the sampling plan file used to draw the sample, one can use the 
default analysis plan contained in the sampling plan file or override the default analysis 
specifications and save your changes to a new file. 
Complex Samples analysis procedures require analysis specifications from an analysis or 
sample plan file in order to provide valid results. 
Plan. Specify the path of an analysis or sample plan file. 
Joint Probabilities. In order to use Unequal WOR estimation for clusters drawn using a 
PPS WOR method, one need to specify a separate file or an open dataset containing the 
joint probabilities. This file or dataset is created by the Sampling Wizard during sampling. 



 

Creating a New Analysis Plan 
1.  From the menus choose: 
 Analyze → Complex Samples → Prepare for Analysis... 
2. Select Create a plan file, and choose a plan filename to save the analysis plan. 
3. Click Next to continue through the Wizard. 
4. Specify the variable containing sample weights in the Design Variables step. Select the 

variable “Employee category” as strata.   

 
 
5. Optionally, in further steps one can: 
a. Select the method for estimating standard errors in the Estimation Method step. 
b. Specify the number of units sampled or the inclusion probability per unit in the Size step. 
c. Add a second or third stage to the design. 

 
6. Now click Finish to save the plan. 

Analysis Preparation Wizard: Design Variables 
This step allows one to identify the stratification and clustering variables and define sample 
weights. One can also provide a label for the stage. 
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Strata. The cross-classification of stratification variables defines distinct subpopulations, 
or strata. Oner total sample represents the combination of independent samples from each 
stratum. 
Clusters. Cluster variables define groups of observational units, or clusters. Samples 
drawn in multiple stages select clusters in the earlier stages and then subsample units from 
the selected clusters. When analyzing a data file obtained by sampling clusters with 
replacement, one should include the duplication index as a cluster variable. 
Sample Weight. One must provide sample weights in the first stage. Sample weights are 
computed automatically for subsequent stages of the current design. 
Stage Label. One can specify an optional string label for each stage. This is used in the 
output to help identify stagewise information. 
4.4 Analysis Preparation Wizard: Estimation Method 
This step allows one to specify an estimation method for the stage. 
WR (sampling with replacement). WR estimation does not include a correction for 
sampling from a finite population (FPC) when estimating the variance under the complex 
sampling design. One can choose to include or exclude the FPC when estimating the 
variance under simple random sampling (SRS). 
Equal WOR (equal probability sampling without replacement). Equal WOR 
estimation includes the finite population correction and assumes that units are sampled with 
equal probability. Equal WOR can be specified in any stage of a design. 
Unequal WOR (unequal probability sampling without replacement). In addition to 
using the finite population correction, Unequal WOR accounts for sampling units (usually 
clusters) selected with unequal probability. This estimation method is available only in the 
first stage. 
4.5 Analysis Preparation Wizard: Size 
This step is used to specify inclusion probabilities or population sizes for the current stage. 
Sizes can be fixed or can vary across strata. For the purpose of specifying sizes, clusters 
specified in previous stages can be used to define strata. Note that this step is necessary 
only when Equal WOR is chosen as the Estimation Method. 

• Units. One can specify exact population sizes or the probabilities with which units were 
sampled. 

• Value. A single value is applied to all strata. If Population Sizes is selected as the unit 
metric, one should enter a non-negative integer. If Inclusion Probabilities is selected, one 
should enter a value between 0 and 1, inclusive. 

• Unequal values for strata. Allows one to enter size values on a per-stratum basis via the 
Define Unequal Sizes dialog box. 

• Read values from variable. Allows one to select a numeric variable that contains size 
values for strata. 

 
 
 
 



 

 4.6 Analysis Preparation Wizard: Plan Summary 
This is the last step within each stage, providing a summary of the analysis design 
specifications through the current stage. From here, one can either proceed to the next stage 
(creating it if necessary) or save the analysis specifications. 

 Analysis Preparation Wizard: Finish 
This is the final step. One can save the plan file now or paste your selections to a syntax 
window. 
When making changes to stages in the existing plan file, one can save the edited plan to a 
new file or overwrite the existing file. When adding stages without making changes to 
existing stages, the Wizard automatically overwrites the existing plan file. If one want to 
save the plan to a new file, choose to Paste the syntax generated by the Wizard into a 
syntax window and change the filename in the syntax commands. 
4.7 Analysis Preparation Wizard: Plan Summary 
This step allows one to review the analysis plan and remove stages from the plan. 
Remove Stages. One can remove stages 2 and 3 from a multistage design. Since a plan 
must have at least one stage, one can edit but not remove stage 1 from the design. 

5. Analysis Outputs  
Now using this Analysis Plan file one generates several types of outputs available in the 
Complex Samples option like 
 
 Frequencies 

 
 General Linear Model 

 Descriptives 
 

 Logistic Regression 

 Crosstabs 
 

 Ordinal Regression 

 Ratios  Cox Regression 
 
5.1 Complex Samples Frequencies (CSFREQUENCIES) 
The Complex Samples Frequencies procedure produces frequency tables for selected 
variables and displays univariate statistics. Optionally, you can request statistics by 
subgroups, defined by one or more categorical variables. Variables for which frequency 
tables are produced should be categorical. Subpopulation variables can be string or numeric 
but should be categorical. 
Complex Samples Frequencies- 

1. From the menus choose: 
Analyze > Complex Samples > Frequencies 

2. Select a plan file by: File – Browse - Plan file name (demo_cs.csplan) 
3. Click Continue. 
4. In the Complex Samples Frequencies dialog box, select at least one frequency variable. 

 
5.2 Complex Samples Descriptives (CSDESCRIPTIVES) 
CSDESCRIPTIVES estimates means, sums, and ratios, and computes their standard 
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errors, design effects, confidence intervals, and hypothesis tests for samples drawn by 
complex sampling methods. The procedure estimates variances by taking into account 
the sample design used to select the sample, including equal probability and PPS 
methods, and WR and WOR sampling procedures.  Optionally, CSDESCRIPTIVES 
performs analyses for subpopulations. 
Descriptives- 

1. From the menus choose: 
Analyze > Complex Samples > Complex Samples Plan for Descriptive analysis  

2. Select a plan file by: File – Browse - Plan file name (demo_cs.csplan) 
3. Continue 
4. Complex Samples Descriptives Wizard – Measures - Sub Population – ok 
5. Output- SPSS Viewer 

 
5.3 Complex Samples Tabulate (CSTABULATE) 
CSTABULATE displays one-way frequency tables or two-way cross tabulations and 
associated standard errors, design effects, confidence intervals, and hypothesis tests for 
samples drawn by complex sampling methods. The procedure estimates variances by 
taking into account the sample design used to select the sample, including equal 
probability and PPS methods, and WR and WOR sampling procedures. Optionally, 
CSTABULATE creates tables for subpopulations. 
Crosstabs- 

1. From the menus choose: 
Analyze > Complex Samples > Complex Samples Plan for Crosstabs analysis Wizard 

2. Select a plan file by: File – Browse - Plan file name (demo_cs.csplan) 
3. Continue 
4.  Complex Samples Crosstabs Wizard – Rows –Columns- Sub Population – ok 
5. Output- SPSS Viewer 

 
5.4 Complex Samples Ratios 

The Complex Samples Ratios procedure displays univariate summary statistics for ratios 
of variables. Optionally, one can request statistics by subgroups, defined by one or more 
categorical variables. 
Statistics. The procedure produces ratio estimates, t tests, standard errors, confidence 
intervals, coefficients of variation, unweighted counts, population sizes, design effects, and 
square roots of design effects. 
Data. Numerators and denominators should be positive-valued scale variables. 
Subpopulation variables can be string or numeric but should be categorical. 
Assumptions. The cases in the data file represent a sample from a complex design that 
should be analyzed according to the specifications in the file selected in the Complex 
Samples Plan dialog box. 

Complex Samples Ratios- 

1. From the menus choose: 

2. Analyze > Complex Samples > Ratios... 



 

3. Select a plan file. Optionally, select a custom joint probabilities file. 

4.  Click Continue. 

5. Select at least one numerator variable and denominator variable, here take “income” and 
“Age” respectively.  

6. Optionally, one can specify variables to define subgroups for which statistics are produced, 
here take “ed”(ed is for sducation). 

 
5.5 Complex Samples General Linear Model (CSGLM) 
This procedure enables you to build linear regression, analysis of variance (ANOVA), 
and analysis of covariance (ANCOVA) models for samples drawn using complex 
sampling methods. The procedure estimates variances by taking into account the sample 
design used to select the sample, including equal probability and PPS methods, and WR 
and WOR sampling procedures.  Optionally, CSGLM performs analyses for 
subpopulations. 
General Linear Model- 

1. From the menus choose: 
Analyze > Complex Samples > Complex Samples Plan for General Linear Model 

2. Select a plan file by: File – Browse - Plan file name (demo_cs.csplan) 
3. Continue 
4. Complex Samples General Linear Model Wizard – Dependent variable –Factors- 

Covariates – Subpopuation variable (Category, if category wise analysis is required)-ok 
5. Output- SPSS Viewer 

 
5.6 Complex Samples Ordinal (CSORDINAL)  
CSORDINAL performs regression analysis on a binary or ordinal polychromous 
dependent variable using the selected cumulative link function for samples drawn by 
complex sampling methods. The procedure estimates variances by taking into account 
the sample design used to select the sample, including equal probability and PPS 
methods, as well as WR and WOR sampling procedures.  Optionally, CSORDINAL 
performs analyses for a subpopulation. 

1. From the menus choose: 
Analyze > Complex Samples > Complex Samples Plan for Complex Samples for 
Ordinal regression  

2. Select a plan file by: File – Browse - Plan file name (demo_cs.csplan) 
3. Continue 
4. Complex Samples for Ordinal regression– Dependent variable –Factors- Covariates –

link function- Subpopulation variable (Category, if category wise analysis is required)-ok 
5. Output- SPSS Viewer 

 
5.7 Complex Samples Logistic Regression (CSLOGISTIC) 
This procedure performs binary logistic regression analysis, as well as multinomial 
logistic regression (MLR) analysis, for samples drawn by complex sampling methods. 
CSLOGISTIC estimates variances by taking into account the sample design used to 
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select the sample, including equal probability and PPS methods, and WR and WOR 
sampling procedures. Optionally, CSLOGISTIC performs analyses for subpopulations. 

1. From the menus choose: 
Analyze > Complex Samples > Complex Samples Logistic Regression  

2. Select a plan file by: File – Browse - Plan file name (demo_cs.csplan) 
3. Continue 
4. Complex Samples for Ordinal regression– Dependent variable –Factors- Covariates –

link function- Subpopulation variable (Category, if category wise analysis is required)-ok 
5. Output- SPSS Viewer 

5.8 Complex Samples Cox Regression 
The Complex Samples Cox Regression procedure performs survival analysis for samples 
drawn by complex sampling methods. Optionally, one can request analyses for a 
subpopulation. 
Examples. A government law enforcement agency is concerned about recidivism rates in 
their area of jurisdiction. One of the measures of recidivism is the time until second arrest 
for offenders. The agency would like to model time to re-arrest using Cox Regression but 
are worried the proportional hazards assumption is invalid across age categories.  

To Obtain Complex Samples Cox Regression 
This feature requires the Complex Samples option. 
From the menus choose: 
Analyze > Complex Samples > Cox Regression... 

 Select a plan file. Optionally, select a custom joint probabilities file. 
 Click Continue. 
 Specify the survival time by selecting the entry and exit times from the study. 
 Select an event status variable. 
 Click Define Event and define at least one event value. 
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1. Introduction 
SAS is a collection of modules that are used to process and analyze data. It began in the 
late ’60s and early ’70s as a statistical package (the name SAS originally stood for Statistical 
Analysis System). However, unlike many competing statistical packages, SAS is also an 
extremely powerful, general-purpose programming language. SAS is a predominant 
software in many industries. In recent years, it has been enhanced to provide state-of-the-
art statistical tools for analysis. The only way to really learn a programming language is to 
write lots of programs, make some errors, correct the errors, and then make some more. If 
one already has access to SAS at work or school, he/she is ready to go. SAS Learning 
Edition 4.1 is useful for those who are learning SAS by themselves and do not have a copy 
of SAS to play with. This is a relatively inexpensive, fully functional version of SAS. 

2. Getting Data into SAS 
SAS can read data from almost any source. Common sources of data are raw text files, 
Microsoft Office Excel spreadsheets, Access databases, and most of the common database 
systems such as DB2 and Oracle. Most of this book uses either text files or Excel 
spreadsheets as data sources. 

3. Components of SAS Programs 
SAS programs often contain DATA steps and PROC steps. DATA steps are parts of the 
program where you can read or write the data, manipulate the data, and perform 
calculations. PROC (short for procedure) steps are parts of your program where you ask 
SAS to run one or more of its procedures to produce reports, summarize the data, generate 
graphs, and much more. DATA steps begin with the word DATA and PROC steps begin 
with the word PROC. Most DATA and PROC steps end with a RUN statement. SAS 
processes each DATA or PROC step completely and then goes on to the next step. 
SAS also contains global statements that affect the entire SAS environment and remain in 
effect from one DATA or PROC step to another. In the program above, the OPTIONS and 
TITLE statements are examples of global statements. It is important to keep in mind that 
the actions of global statements remain in effect until they are changed by another global 
statement or until you end your SAS session.  
All SAS programs, whether part of DATA or PROC steps, are made up of statements. Here 
is the rule: all SAS statements end with semicolons. This is an important rule because if 
you leave out a semicolon where one is needed, the program may not run correctly, 
resulting in hard-to-interpret error messages. Let’s discuss some of the basic rules of SAS 
statements. First, they can begin in any column and can span several lines, if necessary. 
Because a semicolon determines the end of a SAS statement, you can place more than one 
statement on a single line (although this is not recommended as a matter of style). 
SAS is not case sensitive. Well, this is almost true. Of course references to external files 
must match the rules of your particular operating system. So, if you are running SAS under 
UNIX or Linux, file names will be case-sensitive. As you will see later, you get to name 
the variables in a SAS data set. The variable names in Program 1 are Name, Code, Days, 
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Number, Price, and CostPerSeed. Although SAS doesn’t care whether you write these 
names in uppercase, lowercase, or mixed case, it does “remember” the case of each variable 
the first time it encounters that variable and uses that form of the variable name when 
producing printed reports. 

4. SAS Names 
SAS names follow a simple naming rule. All SAS variable names and data set names can 
be no longer than 32 characters and must begin with a letter or the underscore ( _ ) character. 
The remaining characters in the name may be letters, digits, or the underscore character. 
Characters such as dashes and spaces are not allowed. Here are some valid and invalid SAS 
names. 

Valid SAS Names 
Parts, LastName, First_Name, Ques5, Cost_per_Pound, DATE, time, X12Y34Z56 

Invalid SAS Names 
8_is_enough - Begins with a number, 
Price per Pound - Contains blanks, 
Month-total - Contains an invalid character ( - ), 
Num% - Contains an invalid character (%), 

5. SAS Data Sets and SAS Data Types 
When SAS reads data from anywhere (for example, raw data, spreadsheets), it stores the 
data in its own special form called a SAS data set. Only SAS can read and write SAS data 
sets. If you opened a SAS data set with another program (Microsoft Word, for example), it 
would not be a pretty sight. Even if SAS is reading data from Oracle tables or DB2, it is 
actually converting the data into SAS data set format in the background. The good news is 
that you don’t ever have to worry about how SAS is storing its data or the structure of a 
SAS data set. However, it is important to understand that SAS data sets contain two parts: 
a descriptor portion and a data portion. Not only does SAS store the actual data values for 
you, it stores information about these values (things like storage lengths, labels, and 
formats). SAS has two types of variables: character and numeric. This makes it much 
simpler to use and understand than some other programs that have many more data types 
(for example, integer, long integer, and logical).  

6. The SAS Display Manager and SAS Enterprise Guide 
Because SAS runs on many different platforms (mainframes, microcomputers running 
various Microsoft operating systems, UNIX, and Linux), the way you write and run 
programs will vary. You might use a general-purpose text editor on a mainframe to write a 
SAS program, submit it, and send the output back to a terminal or to a file. On PCs, you 
might use the SAS Display Manager, where you write your program in the Enhanced Editor 
(Editor window), see any error messages and comments about your program and the data 
in the Log window, and view your output in the Output window. In addition to the Enhanced 
Editor, an older program, simply called the Program Editor, is available for Windows and 
UNIX users. As an alternative to the Display Manager, you may enter the SAS environment 
using SAS Enterprise Guide, which is a front-end to SAS that allows you to use a menu-
driven system to write SAS programs and produce reports. There are many excellent books 
published by SAS that offer detailed instructions on how to run SAS programs on each 
specific platform and the appropriate access method into SAS.  
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7. A Sample SAS Program 
Let’s start out with a simple SAS program that reads data from a text file and produces 
some basic reports to give you an overview of the structure of SAS programs. For this 
example, we have a text file with data on vegetable seeds. Each line of the file contains the 
following pieces of information (separated by spaces): 

• Vegetable name 

• Product code 

• Days to germination 

• Number of seeds 

• Price 
In SAS terminology, each piece of information is called a variable. (Other database 
systems, and sometimes SAS, use the term column.) A few sample lines from the file are 
shown here: 

File c:\my folder\crop.txt 
Crop_1 50104 55 30 195 
Crop_1 51789 56 30 225 
Crop_2 50179 68 150 395 
Crop_2 50872 65 150 225 
Crop_3 57224 75 200 295 
Crop_3 62471 80 200 395 
Crop_3 57828 66 200 295 
Crop_4 52233 70 30 225 

 
In this example, each line of data produces what SAS calls an observation (also referred to 
as a row in other systems). A complete SAS program to read this data file and produce a 
list of the data, a frequency count showing the number of entries for each crop, the average 
price per seed, and the average number of days until germination is shown here. 
Program - A sample SAS program 
*Comment 1: SAS Program to read veggie data file and to produce several reports; 

* Comment 2: Entering data using program editor; 
data crop; 

input Name $ Code Days Number Price;  
*$ for character variable; 

cards; 
Crop_1 50104 55 30 195 
Crop_1 51789 56 30 225 
Crop_2 50179 68 150 395 
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Crop_2 50872 65 150 225 
Crop_3 57224 75 200 295 
Crop_3 62471 80 200 395 
Crop_3 57828 66 200 295 
Crop_4 52233 70 30 225 
; 

Run; 
 
* Comment 3: To print the inserted data; 
title "List of the Raw Data"; 
footnote "Overview of SAS"; 
proc print data= crop;  
run; 

 
* Comment 4: Alternative way for running data; 
DATA crop; 

input Name $ Code Days Number Price @@;  
cards; 
Crop_1 50104 55 30 195 Crop_1 51789 56 30 225 
Crop_2 50179 68 150 395 Crop_2 50872 65 150 225 
Crop_3 57224 75 200 295 Crop_3 62471 80 200 395 
Crop_3 57828 66 200 295 Crop_4 52233 70 30 225 
; 

Run; 
 
* Comment 5: To import from external sources - txt; 
data crop; 

infile "c:\mywork\crop.txt"; 
input Name $ Code Days Number Price;  

run; 
 
* Comment 6: To import from external sources - csv; 
data crop; 

infile 'c:\mywork\crop.csv'  dlm=',' ;   
input Name $ Code Days Number Price;  
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run; 
 
* Comment 7: Alternative way using IMPORT procedure*/ 
proc import datafile = 'c:\mywork\crop.csv' 
  out = crop dbms=csv replace; 
  getnames=no; 
run; 
 
* Comment 8: To import from external sources - xls */ 
proc import datafile = 'c:\mywork\crop.xls' 
  out = crop dbms=excel replace; 
  getnames=yes; 
run; 
* Comment 9: To modify the data; 
data crop; 

 set crop; 
 CostPerSeed = Price / Number;*add new variable; 
 *drop days;       *delete variable; 
 rename Number=Number_seeds;  *change variable name; 

run; 
 
* Comment 10: To sort the data; 
proc sort data=crop; 

by Code; 
run; 
 
* Comment 11: To find the frequency counts; 
title "Frequency Distribution of crop Names"; 
proc freq data= crop; 

tables Name; 
run; 
 
* Comment 12: To find means of the variables; 
title "Average Cost of Seeds"; 
proc means data= crop; 
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var Price CostPerSeed; 
run; 
 
* Comment 13: To find Scatter Plot; 
proc plot data = crop; 
  plot Days*Price = ‘*’; 
run; 
 
* Comment 14: To fit linear regression; 
proc reg data = crop; 
  model Price = Days; 
run; 
 

References 
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1. Introduction  
A sampling method is a scientific and objective procedure of selecting units from the 
population and provides a sample that is expected to be representative of the population. 
A sampling method makes it possible to estimate the population parameters while 
reducing at the same time the size of survey operations. Some of the advantages of 
sample surveys as compared to complete enumeration are reduction in cost, greater speed, 
wider scope and higher accuracy. A function of the unit values of the sample is called an 
estimator. Various measures, like bias, mean square errors, variance etc. are used to 
assess the performance of the estimator. See Lohr (2010), Kalton (1983), Sukhatme et al. 
(1984), Cochran (1977), Murthy (1977), Raj (1968) and Kish (1965) for more 
information about statistical sampling and analysis of complex survey data. 
The prime objective of a sample survey is to obtain inferences about the characteristic of 
a population. Population is defined as a group of units defined according to the objectives 
of the survey. The population may consist of all the households in a village / locality, all 
the fields under a particular crop. We may also consider a population of persons, families, 
fields, animals in a region, or a population of trees, birds in a forest depending upon the 
nature of data required. The information that we seek about the population is normally, 
the total number of units, aggregate values of various characteristics, averages of these 
characteristics per unit, proportions of units possessing specified attributes etc. The data 
can be collected in two different ways. The first one is complete enumeration which 
means collection of data on the survey characteristics from each unit of the population.  
The main problem in sample surveys is the choice of a proper sampling strategy, which 
essentially comprise of a sampling method and the estimation procedure. In the choice of 
a sampling method there are some methods of selection while some others are control 
measures which help in grouping the population before the selection process. In the 
methods of selection, schemes such as simple random sampling, systematic sampling and 
varying probability sampling are generally used. Among the control measures are 
procedures such as stratified sampling, cluster sampling and multi-stage sampling etc. A 
combination of control measures along with the method of selection is called the 
sampling scheme. 

2. Use of SAS Software for Survey Data Analysis 
Researchers often use sample survey methodology to obtain information about a large 
population by selecting and measuring a sample from that population. Due to variability 
among items, researchers apply scientific probability-based designs to select the sample. 
This reduces the risk of a distorted view of the population and enables statistically valid 
inferences to be made from the sample. To select probability-based random samples from 
a study population, you can use the SURVEYSELECT procedure, which provides a 
variety of methods for probability sampling. To analyze sample survey data, you can use 
the SURVEYMEANS, SURVEYFREQ, SURVEYREG, SURVEYLOGISTIC, and 
SURVEYPHREG procedures, which incorporate the sample design into the analyses.  
Many SAS/STAT procedures, such as the MEANS, FREQ, GLM, LOGISTIC, and 
PHREG procedures, can compute sample means, produce crosstabulation tables, and 
estimate regression relationships. However, in most of these procedures, statistical 
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inference is based on the assumption that the sample is drawn from an infinite population 
by simple random sampling. If the sample is in fact selected from a finite population by 
using a complex survey design, these procedures generally do not calculate the estimates 
and their variances according to the design actually used. Using analyses that are not 
appropriate for your sample design can lead to incorrect statistical inferences.  
The SURVEYMEANS, SURVEYFREQ, SURVEYREG, SURVEYLOGISTIC, and 
SURVEYPHREG procedures properly analyze complex survey data by taking into 
account the sample design. These procedures can be used for multistage or single-stage 
designs, with or without stratification, and with or without unequal weighting. The survey 
analysis procedures provide a choice of variance estimation methods, which include 
Taylor series linearization, balanced repeated replication (BRR), and the jackknife. 

2.1 Proc SURVEYSELECT Procedure 
The SURVEYSELECT procedure provides a variety of methods for selecting probability-
based random samples. The procedure can select a simple random sample or can sample 
according to a complex multistage sample design that includes stratification, clustering, 
and unequal probabilities of selection. With probability sampling, each unit in the survey 
population has a known, positive probability of selection. This property of probability 
sampling avoids selection bias and enables you to use statistical theory to make valid 
inferences from the sample to the survey population.  
To select a sample with PROC SURVEYSELECT, you input a SAS data set that contains 
the sampling frame, which is the list of units from which the sample is to be selected. The 
sampling units can be individual observations or groups of observations (clusters). You 
also specify the selection method, the desired sample size or sampling rate, and other 
selection parameters. PROC SURVEYSELECT selects the sample and produces an 
output data set that contains the selected units, their selection probabilities, and their 
sampling weights. When you select a sample in multiple stages, you invoke the procedure 
separately for each stage of selection, inputting the frame and selection parameters for 
each current stage.  
PROC SURVEYSELECT provides methods for both equal probability sampling and 
probability proportional to size (PPS) sampling. In equal probability sampling, each unit 
in the sampling frame, or in a stratum, has the same probability of being selected for the 
sample. In PPS sampling, a unit’s selection probability is proportional to its size measure.  
PROC SURVEYSELECT provides the following equal probability sampling methods:  

• simple random sampling (without replacement)  

• unrestricted random sampling (with replacement)  

• systematic random sampling  

• sequential random sampling  
This procedure also provides the following probability proportional to size (PPS) 
sampling methods:  

• PPS sampling without replacement  
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• PPS sampling with replacement  

• PPS systematic sampling  

• PPS algorithms for selecting two units per stratum  

• sequential PPS sampling with minimum replacement  
The procedure uses fast, efficient algorithms for these sample selection methods. Thus, it 
performs well even for large input data sets or sampling frames.  PROC 
SURVEYSELECT can perform stratified sampling by selecting samples independently 
within strata, which are non-overlapping subgroups of the survey population. 
Stratification controls the distribution of the sample size in the strata. It is widely used in 
practice toward meeting a variety of survey objectives. For example, with stratification 
you can ensure adequate sample sizes for subgroups of interest, including small 
subgroups, or you can use stratification toward improving the precision of the overall 
estimates. When you use a systematic or sequential selection method, PROC 
SURVEYSELECT can also sort by control variables within strata for the additional 
control of implicit stratification.  
For stratified sampling, PROC SURVEYSELECT provides survey design methods to 
allocate the total sample size among the strata. Available allocation methods include 
proportional, Neyman, and optimal allocation. Optimal allocation maximizes the 
estimation precision within the available resources, taking into account stratum sizes, 
costs, and variances.  
PROC SURVEYSELECT provides replicated sampling, where the total sample is 
composed of a set of replicates, and each replicate is selected in the same way. You can 
use replicated sampling to study variable non-sampling errors, such as variability in the 
results obtained by different interviewers. You can also use replication to estimate 
standard errors for combined sample estimates and to perform a variety of other 
resampling and simulation tasks.  

Simple Random Sampling 
The following PROC SURVEYSELECT statements select a probability sample of 
customers from the ‘Customers’ data set by using simple random sampling:  

title1 'Customer Satisfaction Survey'; 
title2 'Simple Random Sampling'; 
proc surveyselect data=Customers method=srs n=100 
                  out=SampleSRS; 
run; 

The PROC SURVEYSELECT statement invokes the procedure. The DATA= option 
names the SAS data set Customers as the input data set from which to select the sample. 
The METHOD=SRS option specifies simple random sampling as the sample selection 
method. In simple random sampling, each unit has an equal probability of selection, and 
sampling is without replacement. Without-replacement sampling means that a unit cannot 
be selected more than once. The N=100 option specifies a sample size of 100 customers. 
The OUT= option stores the sample in the SAS data set named SampleSRS.  
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Figure 1 displays the output from PROC SURVEYSELECT, which summarizes the 
sample selection. A sample of 100 customers is selected from the data set Customers by 
simple random sampling. With simple random sampling and no stratification in the 
sample design, the selection probability is the same for all units in the sample. In this 
sample, the selection probability for each customer equals 0.007423, which is the sample 
size (100) divided by the population size (13,471). The sampling weight equals 134.71 for 
each customer in the sample, where the weight is the inverse of the selection probability. 
If you specify the STATS option, PROC SURVEYSELECT includes the selection 
probabilities and sampling weights in the output data set. (This information is always 
included in the output data set for more complex designs.)  
The random number seed is 39647. PROC SURVEYSELECT uses this number as the 
initial seed for random number generation. Because the SEED= option is not specified in 
the PROC SURVEYSELECT statement, the seed value is obtained by using the time of 
day from the computer’s clock. You can specify SEED=39647 to reproduce this sample.  

Figure 1. Sample Selection Summary 

Customer Satisfaction Survey 

Simple Random Sampling 

 
The SURVEYSELECT Procedure 

Selection Method Simple Random Sampling 

Input Data Set CUSTOMERS 

Random Number Seed 39647 

Sample Size 100 

Selection Probability 0.007423 

Sampling Weight 134.71 

Output Data Set SAMPLESRS 

The sample of 100 customers is stored in the SAS data set SampleSRS. PROC 
SURVEYSELECT does not display this output data set. The following PROC PRINT 
statements display the first 20 observations of SampleSRS:  

title1 'Customer Satisfaction Survey'; 
title2 'Sample of 100 Customers, Selected by SRS'; 
title3 '(First 20 Observations)'; 
proc print data=SampleSRS(obs=20); 
run; 

ms-its:C:%5CProgram%20Files%5CSAS%20Home%5CSASFoundation%5C9.3%5Ccore%5Chelp%5Cen%5Cstatug.chm::/statug.hlp/statug_surveyselect_sect003.htm#statug.surveyselect.svsgs2q
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Figure 2 displays the first 20 observations of the output data set SampleSRS, which 
contains the sample of customers. This data set includes all the variables from the 
DATA= input data set Customers. If you do not want to include all variables, you can use 
the ID statement to specify which variables to copy from the input data set to the output 
(sample) data set.  

Figure 2. Customer Sample (First 20 Observations) 

Customer Satisfaction Survey 
Sample of 100 Customers, Selected by SRS 

(First 20 Observations) 

 

Obs CustomerID State Type Usage 
1 036-89-0212 FL New 74 

2 045-53-3676 AL New 411 

3 050-99-2380 GA Old 167 

4 066-93-5368 AL Old 1232 

5 082-99-9234 FL New 90 

6 097-17-4766 FL Old 131 

7 110-73-1051 FL Old 102 

8 111-91-6424 GA New 247 

9 127-39-4594 GA New 61 

10 162-50-3866 FL New 100 

11 162-56-1370 FL New 224 

12 167-21-6808 SC New 60 

13 168-02-5189 AL Old 7553 

14 174-07-8711 FL New 284 

15 187-03-7510 SC New 21 

16 190-78-5019 GA New 185 

17 200-75-0054 GA New 224 

18 201-14-1003 GA Old 3437 

19 207-15-7701 GA Old 24 

20 211-14-1373 AL Old 88 

 Stratified Sampling  
In this section, stratification is added to the sample design for the customer satisfaction 
survey. The sampling frame, which is the list of all customers, is stratified by State and 
Type. This divides the sampling frame into non-overlapping subgroups formed from the 
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values of the State and Type variables. Samples are then selected independently within 
the strata.  
PROC SURVEYSELECT requires that the input data set be sorted by the STRATA 
variables. The following PROC SORT statements sort the Customers data set by the 
stratification variables State and Type:  

proc sort data=Customers; 
   by State Type; 
run; 

The following PROC SURVEYSELECT statements select a probability sample of 
customers from the Customers data set according to the stratified sample design:  

title1 'Customer Satisfaction Survey'; 
title2 'Stratified Sampling'; 
proc surveyselect data=Customers method=srs n=15 
                  seed=1953 out=SampleStrata; 
   strata State Type; 
run; 

The STRATA statement names the stratification variables State and Type. In the PROC 
SURVEYSELECT statement, the METHOD=SRS option specifies simple random 
sampling. The N=15 option specifies a sample size of 15 customers for each stratum. If 
you want to specify different sample sizes for different strata, you can use the N=SAS-
data-set option to name a secondary data set that contains the stratum sample sizes. The 
SEED=1953 option specifies '1953' as the initial seed for random number generation. 
Figure 3 displays the output from PROC SURVEYSELECT, which summarizes the 
sample selection. A total of 120 customers are selected.  

Figure 3. Sample Selection Summary 

Customer Satisfaction Survey 
Stratified Sampling 

 
The SURVEYSELECT Procedure 

Selection Method Simple Random Sampling 

Strata Variables State 

  Type 

Input Data Set CUSTOMERS 

Random Number Seed 1953 

Stratum Sample Size 15 

ms-its:C:%5CProgram%20Files%5CSAS%20Home%5CSASFoundation%5C9.3%5Ccore%5Chelp%5Cen%5Cstatug.chm::/statug.hlp/statug_surveyselect_sect004.htm#statug.surveyselect.svsgs5q
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Number of Strata 8 

Total Sample Size 120 

Output Data Set SAMPLESTRATA 

 

2.2 Proc SURVEYMEANS Procedure 
The SURVEYMEANS procedure produces estimates of population means and totals from 
sample survey data. The procedure also computes estimates of proportions for categorical 
variables, estimates of quantiles for continuous variables, and ratio estimates of means 
and proportions. For all of these statistics, PROC SURVEYMEANS provides standard 
errors, confidence limits, and t tests.  
PROC SURVEYMEANS provides domain analysis, which computes estimates for 
domains (subpopulations), in addition to analysis for the entire study population. 
Formation of subpopulations can be unrelated to the sample design, and so the domain 
sample sizes can actually be random variables. Domain analysis takes this variability into 
account by using the entire sample to estimate the variance of domain estimates. Domain 
analysis is also known as subgroup analysis, subpopulation analysis, and subdomain 
analysis.  

Simple Random Sampling 
This example illustrates how you can use PROC SURVEYMEANS to estimate 
population means and proportions from sample survey data. The study population is a 
junior high school with a total of 4,000 students in grades 7, 8, and 9. Researchers want to 
know how much these students spend weekly for ice cream, on average, and what 
percentage of students spend at least $10 weekly for ice cream.  
To answer these questions, 40 students were selected from the entire student population 
by using simple random sampling (SRS). Selection by simple random sampling means 
that all students have an equal chance of being selected and no student can be selected 
more than once. Each student selected for the sample was asked how much he or she 
spends for ice cream per week, on average. The SAS data set IceCream saves the 
responses of the 40 students:  

data IceCream; 
   input Grade Spending @@;  
   if (Spending < 10) then Group='less'; 
   else Group='more'; 
   datalines;  
7 7  7  7  8 12  9 10  7  1  7 10  7  3  8 20  8 19  7 2 
7 2  9 15  8 16  7  6  7  6  7  6  9 15  8 17  8 14  9 8 
9 8  9  7  7  3  7 12  7  4  9 14  8 18  9  9  7  2  7 1 
7 4  7 11  9  8  8 10  8 13  7  2  9  6  9 11  7  2  7 9 
; 
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The variable Grade contains a student’s grade. The variable Spending contains a student’s 
response regarding how much he spends per week for ice cream, in dollars. The variable 
Group is created to indicate whether a student spends at least $10 weekly for ice cream: 
Group='more' if a student spends at least $10, or Group='less' if a student spends less than 
$10.  
You can use PROC SURVEYMEANS  to produce estimates for the entire student 
population, based on this random sample of 40 students: 

title1 'Analysis of Ice Cream Spending'; 
title2 'Simple Random Sample Design'; 
proc surveymeans data=IceCream total=4000; 
   var Spending Group; 
run; 

The PROC SURVEYMEANS statement invokes the procedure. The TOTAL=4000 
option specifies the total number of students in the study population, or school. The 
procedure uses this total to adjust variance estimates for the effects of sampling from a 
finite population. The VAR statement names the variables to analyze, Spending and 
Group. Figure 4 displays the results from this analysis. There are a total of 40 
observations used in the analysis. The "Class Level Information" table lists the two levels 
of the variable Group. This variable is a character variable, and so PROC 
SURVEYMEANS provides a categorical analysis for it, estimating the relative frequency 
or proportion for each level. If you want a categorical analysis for a numeric variable, you 
can name that variable in the CLASS statement.  

Figure 4. Analysis of Ice Cream Spending 

Analysis of Ice Cream Spending 
Simple Random Sample Design 

 
The SURVEYMEANS Procedure 

Data Summary 
Number of Observations 40 

 

Class Level Information 
Class Variable Levels Values 
Group 2 less more 

 

Statistics 

ms-its:C:%5CProgram%20Files%5CSAS%20Home%5CSASFoundation%5C9.3%5Ccore%5Chelp%5Cen%5Cstatug.chm::/statug.hlp/statug_surveymeans_sect003.htm#statug.surveymeans.svmgsex1a
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Variable Level N Mean Std Error of Mean 95% CL for Mean 
Spending   40 8.750000 0.845139 7.04054539 10.4594546 

Group less 23 0.575000 0.078761 0.41568994 0.7343101 

  more 17 0.425000 0.078761 0.26568994 0.5843101 

 
2.3 The SURVEYFREQ Procedure  
This procedure produces one-way to n-way frequency and cross tabulation tables from 
sample survey data. These tables include estimates of population totals, population 
proportions (overall proportions, and also row and column proportions), and 
corresponding standard errors. Confidence limits, coefficients of variation, and design 
effects are also available. The procedure provides a variety of options to customize the 
table display.  

 
2.4 PROC SURVEYREG PROCEDURE 
The SURVEYREG procedure performs regression analysis for sample survey data. The 
procedure fits linear models and computes regression coefficients and their variance-
covariance matrix. The procedure enables you to specify classification effects by using 
the same syntax as in the GLM procedure.  

2.5 PROC SURVEYLOGISTIC PROCEDURE 
The SURVEYLOGISTIC procedure provides logistic regression analysis for sample 
survey data. Logistic regression analysis investigates the relationship between discrete 
responses and a set of explanatory variables. PROC SURVEYLOGISTIC fits linear 
logistic regression models for discrete response survey data by the method of maximum 
likelihood and incorporates the sample design into the analysis. The SURVEYLOGISTIC 
procedure enables you to specify categorical classification variables (also known as 
CLASS variables) as explanatory variables in the model by using the same syntax for 
main effects and interactions as in the GLM and LOGISTIC procedures.  

Table 1: Survey Sampling and Analysis Procedures in SAS/STAT Software 
 
PROC SURVEYSELECT   
Selection Methods  Simple random sampling (without replacement)  
 Unrestricted random sampling (with replacement)  
 Systematic  
 Sequential  
 Probability proportional to size (PPS) sampling, 
 with and without replacement  
 PPS systematic  
 PPS for two units per stratum  
 PPS sequential with minimum replacement  
Allocation Methods  Proportional  
 Optimal  

mk:@MSITStore:C:%5CProgram%20Files%5CSASHome%5CSASFoundation%5C9.3%5Ccore%5Chelp%5Cen%5Cstatug.chm::/statug.hlp/statug_introsamp_sect003.htm
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 Neyman  
Sampling Tools  Cluster sampling  
 Replicated sampling  
 Serpentine sorting  
PROC SURVEYMEANS   
Statistics  Estimates of population means and totals  
 Estimates of population proportions  
 Estimates of population quantiles  
 Ratio estimates  
 Standard errors  
 Confidence limits  
 Hypothesis tests  
 Domain analysis  
PROC SURVEYFREQ   
Tables  One-way frequency tables  
 Two-way and multiway crosstabulation tables  
 Estimates of population totals and proportions  
 Standard errors  
 Confidence limits  
Analyses  Tests of goodness of fit  
 Tests of independence  
 Risks and risk differences  
 Odds ratios and relative risks  
Graphics  Weighted frequency and percent plots  
 Odds ratio, relative risk, and risk difference plots  
PROC SURVEYREG   
Analyses  Linear regression model fitting  
 Regression coefficients  
 Covariance matrices  
 Confidence limits  
 Hypothesis tests  
 Estimable functions  
 Contrasts  
 Least squares means (LS-means) of effects  
 Custom hypothesis tests among LS-means  
 Regression with constructed effects  
 Predicted values and residuals  
 Domain analysis  
PROC SURVEYLOGISTIC   
Analyses  Cumulative logit regression model fitting  
 Logit, probit, and complementary log-log link functions  

mk:@MSITStore:C:%5CProgram%20Files%5CSASHome%5CSASFoundation%5C9.3%5Ccore%5Chelp%5Cen%5Cstatug.chm::/statug.hlp/statug_introsamp_sect004.htm
mk:@MSITStore:C:%5CProgram%20Files%5CSASHome%5CSASFoundation%5C9.3%5Ccore%5Chelp%5Cen%5Cstatug.chm::/statug.hlp/statug_introsamp_sect005.htm
mk:@MSITStore:C:%5CProgram%20Files%5CSASHome%5CSASFoundation%5C9.3%5Ccore%5Chelp%5Cen%5Cstatug.chm::/statug.hlp/statug_introsamp_sect006.htm
mk:@MSITStore:C:%5CProgram%20Files%5CSASHome%5CSASFoundation%5C9.3%5Ccore%5Chelp%5Cen%5Cstatug.chm::/statug.hlp/statug_introsamp_sect007.htm
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 Generalized logit regression model fitting 
 Regression coefficients  
 Covariance matrices  
 Confidence limits  
 Hypothesis tests  
 Odds ratios  
 Estimable functions 
 Contrasts  
 Least squares means (LS-means) of effects  
 Custom hypothesis tests among LS-means  
 Regression with constructed effects  
 Model diagnostics  
 Domain analysis  
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